
AD-A245 958
ElDliIE[l| ISTGRADUATE SCHOOL

Monterey, California

DTIC
01 ELECTE fl

FED U- THESIS

NPSNET: OBJECT ANIMATION
SCRIPT INTERPRETATION SYSTEM

by

Phillip D. West

September 1991

Thesis Advisors: Michael J. Zyda
David R. Pratt

Approved for public release; distribution is unlimited.

92 2 11 087

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSUNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIIUTION/AVAILABILITY OF REPORT

2b. DECLASSIFI1ATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NuMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL ra. NAME OF MONITORING ORGANIZATION
(if applicable)

Naval Postgraduate School CS Naval Postgraduate School
6c. ADDRESS (Ciy, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAM UNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZTION (if applicable)

Bc. ADDRESS (Cirjo State, andZIP Code) 10. SOURC" OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (knclude Security Cla, iration)

NPSNET: OBJECT ANIMATION SCRIPT INTERPRETATION SYSTEM
12. PERSONAL AUTHOR(S)

West, Phillip D.
13a. TYPE OF REPORT FR13b. TIME COVER 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNTMaster's Thesis FROM 09/8 TO JO ... September 199193

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the authors and do not reflect the

official policy or position of the Department of Defense or the United States Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary andidentify by block number)

FIELD GROUP SUB-GROUP Graphics, Simulations, Scripting, DOD Software Development

19. ABSTRACT (Conthue on revas f necessay and dentify by block number)
The goal of this work is to develop a text-based script interpretation system for easy and efficient 3D visual

simulations without extensive programming. Scripts are sequences of events representing task-level behaviors in
virtual worlds systems. The Object Animation Script Interpretation System for NPSNET (NPSNET-OASIS),
provides animators at the Naval Postgraduate School a mechanism for interacting with 3D visual simulations via
scripted autonomous players. Libraries of scripts are collected for rapid generation of 3D visual simulations.
NPSNET-OASIS makes use of object-oriented design methodologies for reusability and extensibility. Included in
NPSNET-OASIS are the object tools for script processing, writing, and sorting.

20. 019TRiBUTINVAILABILITY OF ATAT 21. ABrTSGT SECURITY CLASSIFICATION

[3UNCLASSIFIEDIUNLIMITED [] SAME AS RPT. "DTIC USERS UNCLASSIFIED
25. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE finclude Area Code c. OFF SYMBO

Michael J. Zyda (408) 646-2305 CS/Zk
DO FORM 1473,84 MAR 83 APR edition may be used unil exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

NPSNET: OBJECT ANIMATION SCRIPT INTERPRETATION SYSTEM

by

Phillip D. West
Lieutenant, United States Navy

B.S., Penn State University, 1984

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Author: _ _ _ _ _ _ _ _

Phillip D. West

Approved By:

David R. Pratt, Co-Advisor

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

The goal of this work is to develop a text-based script interpretation system for easy

and efficient 3D visual simulations without extensive programming. Scripts are

sequences of events representing task-level behaviors in virtual worlds systems. The

Object Animation Script Interpretation System for NPSNET (NPSNET-OASIS),

provides animators at the Naval Postgraduate School a mechanism for interacting with

3D visual simulations via scripted autonomous players. Libraries of scripts are collected

for rapid generation of 3D visual simulations. NPSNET-OASIS makes use of object-

oriented design methodologies for reusability and extensibility. Included in NPSNET-

OASIS are the object tools for script processing, writing, and sorting.

Accesion For
NTIS CRAW Ft

Dric AS-
Ju~tification. .. .

By.

DiAt ibu:tion I

Availabflity Codcs

Avai; a::d lOt
Dist Special

b-

Ifz

TABLE OF CONTENTS

THE NEED FOR SCRIPT ANIMATION LANGUAGES 1

A. INTRODUCTION..1.

B. BACKGROUND .. 2

C. SUMMARY OF CHAPTERS .. 4

I. DEVELOPMENT OF NPSNET-OASIS .. 5

A. DESIGN CRITERIA.. 5

B. OBJECT-ORIENTED DESIGN.. 5

1. Class Hierarchy... 5

2. Event Objects.. 6

3. System Objects7

C. NPSNET-OASIS SCRIPT FORMAT.. 9

II. OVERVIEW OF NPSNET-OASIS..1..1

A. SCRIPTING TOOLS ... 1

1. Script Processor ... 12

2. Script Generator... 13

3. System Timekeeper ... 13

B. STRUCTURE OF SCRIPT EVENTS....................................... 15

I. 3D Icon Identification ... 15

2. Event Position ... 16

3. Timestamp... 17

4. Event Attributes ... 17

C. SCRIPT OPTIONS... 18

1. ScripLAbort... 18

2. Script-Call... 21

3. Script-Chain.........t.. 21

4. ScripLRepeat ... 21

iv

5. Script-Timestarnp ...21

6. ScriptLTime-.Adjustment... 22

7. Script..ime..Factor ... 22

8. ScripL-Delay... 22

9. ScripiLLocation ... 22

10. ScripLFile .Write 23

*11. ScripLMessage.. 23

IV. IMPLEMENTATION OF NPSNET-OASIS 24

A. OVERVIEW.. 24

R2. DATA STRUCTURES .. 24

C. NPSNET-OASIS NETWORK INTERFACE24

1. Internal Data Structures ... 25

2. Message Packets... 26

3. Operation of Network Interface... 26

V. CONCLUSIONS AND RECOMMENDATIONS 2119

A. SUMMARY AND CONCLUSION... 29

B. LIMITATIONS... 29

C. FUTURE DIRECTIONS .. 29

APPENDIX A: NPSNET-OASIS Script Events, Results, and Errors 31

APPENDIX B: NPSNET-OASIS Sample Scripts 49

APPENDIX C: Class Dt-finition of ScriptProcessor 53

APPENDIX D: Class Dtftinition of ScriptGenerator 55

APPENDIX E: Class iDefiniton of TimeKeeper... 57

APPENDIX F: Chkss Definition of OasisSystem...................................... 59

APPENDIX G: Class Definition of OasisScriptSorter 62

APPENDIX H: Class Definition of OasisScriptPreprocessor........................... 63

APPENDIX I: Class Definition of ScriptEvelits and Attrbutes6*

APPENDIX J: Class Definition of ScriptObject80

APPENDIX K: NPSNET-OASIS Network Interface...................................

LIST OF REFERENCES..8

INMTAL DISTRIBUTION LIST... 84

Ai

LIST OF FIGURES

Figure 2.1 Root Class of NPSNET-OASIS Class Hfierarchy........................ 6

Figure 2.2 Ancestors of Class ScriptEvent.. 6

Figure 2.3 Descerdants. of Class EventAttribute

Figure 2.4 Ancestors of Class ScriptObject... 8

Figure 2.5 Ancestors and Descendants of Class OasisSystem 8

Figure 2.6 Sample Sc-rpt .. 9

Figure 2.7 General Syntax for Script Statements 10

Figure 3.1 The NPSNET-OASIS System... 1

Figure 3.2 Error Mt suge... 12

Figure 3.3 Illustration of Timestamp Adjustment Based op System Clock 14

Figure 3.4 Illustration of Timestamp A djustment Based on User Clock.......... 14

Figure 3.5 The 3D Icon Identification Nur~iber 15

Figure 3.6 UTM Coordinate Position .. 16

Figure 3.7 UTM Coordinate Position With Padded Zeros.......................... 17

Figure 3.8 Timestamp, Formats... 18

Figure 3.9 Sample Script With Scrpt Options....................................... 19

FiAgure 3. 10 Sample Script With Script Options 20

Figure 4.1 NPSNET-OASIS Network Interface 25

Figure 4.2 Network Interface Monitor Routine 28

vii

I. THE NEED FOR SCRIPT ANIMATION LANGUAGES

A. INTRODUCTION

The Graphics and Video Laboratory of the Computer Science Department at the

Naval Postgraduate School (NPS) has a long history of developing 3D visual simulation

systems on inexpensive, commercially available graphics worktations [Ref. 10]. The

visual simulators developed in the Graphics and Video Laboratory include the FOG-M

missile simulator, the VEH vehicle simulator, the Airborne Remotely Operated Device

(AROD), the Moving Platform Simulator series (MPS-1, MPS- 2, and MPS-3), the High

Resolution Digital Terrain Model (HRDTM) system, the Forward Observer Simulator

Trainer (FOST) the NPS Autonomous Underwater Vehicle simulator (NPSAUV), and the

Command and Control Workstation t' the Future system (CCWF). Current visual

simulation efforts are focused on the NPSNET system, a 3D visual simulation system that

utilizes SIMNET and DMA databases.

NPSNET is a real-time, 3D visual simulation systera capable of displaying various

types of vehicles - ground, ships, and aircraft [Ref. 10]. The system is capable of

displaying additional obiects such as missiles, buildings, trees, and environmental effects,

such as fog and smoke. Objects are represented initially by pre-defined 3D icons stored in

Object File Format (OFF) [Ref. 9]. 3D icons are geometric descriptions of 3D objects.

Vehicle movements in NPSNET are controlled by mouse, spaceballs, and button/

dialboxes. In addition, vehicles can be driven interactively from other workstations by

means of message packets via Ethernet.

In any simulator, the backbone of the system is its internal data structures for

modeling the state of the world [Ref. 10]. It is from the world state information that visual

1

displays are generated. Continuous and transient events are referred to as task-level

behaviors in virtual world systems [Ref. 1]. Continuous events are dynamic changes in

motion of 3D icons. Transient events are dynamic changes of appearances in virtual 3D

icons, such as explosions and collisions.

When sufficient numbers of actual interactive players are not available, the Graphics

and Video Laboratory requires two methods for generating autonomous players to

populate the world - semi-automated forces and scripting [Ref. 10]. Currently in

development, semi-automated forces provide intelligent behavioral models to autonomous

players via parallel processing and the network. Scripting provides a programmable

mechanism to add autonomous agents or to change task-level behaviors of 3D icons.

The script system, the Object Animation Script Interpretation System for NPSNET

(NPSNET-OASIS), was developed to meet the requirements of scripted autonomous

players. Designed using object-oriented methodologies, NPSNET-OASIS provides the

capabilities to record and playback scripts of task-level behaviors. Scripts in NPSNET-

OASIS are generated as sequences of events in uniform order based on timestamps.

Unlike current systems which are coded in standard C, NPSNET-OASIS is programmed

in C++, thus allowing reusability and extensibility. Several instances of NPSNET-OASIS

can be integrated into NPSNET, allowing the simultaneous execution of multiple scripts.

B. BACKGROUND

There are two interaction paradigms in virtual world systems - guiding and

programming [Ref. 1]. Guiding is interaction with objects from built-in procedural

support and specially-designed graphics hardware. Programming is interaction with

objects using special-purpose simulation software for algorithmic description and control.

The principles of software engineering are applied to natural script languages in an

effort to provide a more flexible, extensible, and efficient interactive tool for visual

2

simulators [Ref. 5]. Libraries of scripts can be generated and reused, allowing fast

prototyping of simulated engagements and tactics. Simple in design and use, scripts are

basically procedures for controlling 3D icons. Combining .cripts to create larger ones,

supports modular scripting in a high-level of programming. In LISP-based systems, the

rules of the script language are extensible so that new animation procedures and primitives

can be added to the system. Easier to learn than complex Laguages, script languages can

develop animation scripts faster than a functionally equivalent Ada or C program.

The basis for our research in script systems is on three earlier systems - ASAS, PDI,

and MANUS. Based on the LISP language, Actor/Scriptor Animation System (ASAS), is

a full programming language system for animation and graphics [Ref. 6]. ASAS supports

independent program structures called actors, and includes a set of geometric objects and

operators. Geometric objects include data types such as vectors, colors, polygons, solids,

and lights. Actors are responsible for geometric objects in an animation sequence.

Geometric operators are the tools the animator uses to shape, move, and orient geometric

* objects.

Influenced by ASAS, Pacific Data Images (PDI) developed a script system on top of

the C programming language for creating animation in the entertainment field [Refs. 3, 5).

The PDI script system supports complex modeling, transformations, and motion. At each

production stage, the script is updated to reflect production changes, and to incorporate

new models and motion data from other parts of script system.

BOLIO, an integrated graphical simulation platform (IGSP), provides users tools to

interact in simulation of task-level behaviors, and event-driven processes in virtual worlds

(Refs. 1, 8). A component of BOLIO, MANUS, provides the built-in language and

processor for associating objects and processes in defining task-level behaviors.

Programmers have access to primitive operations of kinematics and dynamics in a

3

modular function library. Complex scripts are used for testing and debugging various-

simulation modules, or for defining virtual cnvironmnents

C. SUMMARY OF CHAPTERS

The development of NPSNET- OASIS involves understanding of required task-level

behaviors of NPSNET and other 3D visual simulators of the Graphics and Video

Laboratoty. In Chapter II, the design of the script system is discussed. Chapter III

discusses the overview of NPSNET-OASIS. The interaction of NPSNET-OASIS with

NPSNET is discussed in Chapter IV. Limitations and future directions are the subjects of

Chapter V. Appendices include syntax for script events and script options, listings of

script results and script errors, sample scripts, and object class descriptions for NPSNET-

OASIS.

4

II. DEVELOPMENT OF NPSNET-OASIS

A. DESIGN CRITERIA

The goal of NPSNET-OASIS is to build a scripting system that is reusable and

extensible. In addition, NPSNET-OASIS must be simple for system integration. Previous

3D visual simulators in the Graphics and Video Laboratory were developed with traditional

programming languages such as C, and are not easy to maintain. Whenever, a modification

is made, the entire system is affected. The design of NPSNET-OASIS must be capable of

being adapted easily as modifications are made to NPSNET.

B. OBJECT-ORIENTED DESIGN

The concept of object-oriented design (OOD) involves solving problems by

identifying the real-world objects of the problem, and the processing required of those

objects [Ref. 2]. For this reason, all components of NPSNET-OASIS are represented as

objects. Classes in object-oriented design, distinguished in italics text, are templates for

categories of objects, and provide the means for creating objects. Because objects serve as

data abstractions, classes must include data structure definitions and the processing code

for instances of those data structures.

1. Class Hierarchy

OasisObject is the root class of the NPSNET-OASIS class hierarchy, as other classes

in the hierarchy are derived from it. The main descendants of OasisObject -

OasisSystemObject and OasisEventObject, represent the main components of NPSNET-

OASIS (Figure 2.1). OasisSystemObject represents the base class for all system

components in script processing, script generating, and script sorting. OasisEventObjects

represents the base class for all task-level behaviors in 3D icons. For illustrative purposes,

5

classes of NPSNET-OASIS are segmented from the total class hierarchy, and are

represented as ellipses with arrows pointing to descendants.

2. Event Objects

Each ScriptEvent is composed of an EventObject, EventPosition, TimeStamp, and

EventAttribute, which are descendants of OasisEventObjects (Figure 2.2). EventObjects

provide identification of 3D icons in events, and EventPositions provide the locations of

the events. For every ScriptEvent there is a TimeStamp, which provides the time

mechanism to synchronize all events in uniform order. For additional information in

supporting task-level behaviors of 3D icons, EventAttributes are used to represent the

change of continuous and transient events (Figure 2.3).

Presented in Figure 2.4 are the six classes of script events - VehicleEvent,

WeaponEvent, MiscObjectEvent, EnvironmentEvent, ScriptOption, ScriptComment, and

ScriptOption. ScriptComment and ScriptOption do not represent script events. However,

Figure 2.1 Root Class of NPSNET-OASIS Class Hierarchy

EventPosition EventAttribute

EventbjectTimeStamp

Figure 2.2 Ancestors of Class ScriptEvent

6

ComponentbjObtectjctpeoscon

Figur. 2.3 Descendants of Class EventAttribute

script events are supported by them for descriptive narrations in script files and script

synchronization. Communicating with script events, ScriptObjects are the interfaces for

passing messages of task-level behaviors to and from 3D icons. ScriptObjects interact with

virtual world systems for controlling and recording continuous and transient events.

3. System Objects

There are four parent classes for OasisSystem - ScriptFile, ScriptProcessor,

ScriptGenerator, and TimeKeeper (Figure 2.5). Classes are derived from

OasisSystemEvents for supporting system requirements of NPSNET-OASIS. ScriptFiles

provide the mechanism for interacting script files with script systems. EventProcessor is

the base class for the required event processors to the ScriptProcessor. ScriptProcessor is

the tool for interpreting and processing of all script files. The script writer of NPSNET-

OASIS, the ScriptGenerator, records all script objects to a script file. The last parent class,

the TimeKeeper, provides the system times for processing and recording script files.

7

ScriptEvent ScriptObject

ScriptOption

Figure 2.4 Ancestors of Class ScriptObject

Preprocessor

Figure 2.5 Ancestors and Descendants of Class OasisSystem

Derived from OasisSystem, are two additional object classes for NPSNET-OASIS

(Figure 2.5). OasisScriptPreprocessor, is a preprocessor for validating script files prior to

processing. Script errors are displayed for further script modification. The second object

class, OasisScriptSorter, provides the sorting of script events based on time stamps. This

tool ensures all script events are in uniform order.

8

C. NPSNET-OASIS SCRIPT FORMAT

All script files for NPSNET-OASIS are in text-based format allowing the user to use

any standard text-editor for script editing and creation (Figure 2.6). It is easier to edit task-

Description: Sample script of two M-1 tanks
Rost Id Number: 501
Simulator: NPSNET on IRIS VGX Workstation
Author: Phillip West

SCRIPT-TIMEREFERENCE relative
SCRIPTLOCATION 79A-DN

/* Activate clouds with velocity 5.0 km/h, heading 270.0 west */
ENVIRONMENT ACTIVATE 5010499 Cloud 270.0 5.0 34536783 1000.0 30.0

/* Activate two M-I tanks */
VEHICLE ACTIVATE 5010001 M1 090.0 40.0 345678 0.0 40.0
VEHICLE ACTIVATE 5010002 Ml 090.0 40.0 345678 0.0 45.0

/* Change headings of M-I tanks */
VEHICLEHEADING 5010001 135.0 344955 0.0 2:0.0
VEHICLEHEADING 5010002 120.0 345958 0.0 2:5.0

/* X-1 tanks passing by a palm tree */
OBJECTACTIVATE 5010003 PalmTree 345700 0 4:0.0
OBJECT DEACTIVATE 5010003 5:35.0

/* Change velocities of X-1 tanks */
VEHICLE SPEED 5010001 5.0 344801 0.0 6:0.0
VEHICLE SPEED 5010001 5.0 344803 0.0 7:25.0

/* X-I tanks passing by a building */
OBJECTACTIVATE 5010004 Building 345700 0.0 8:10.0
OBJECTDEACTIVATE 5010004 9:40.0

/* Deactivate N 1 tanks */
VEHICLE DEACTIVATE 5010001 9:45.0
VEHICLEDEACTIVATE 5010002 9:50.0

/* Deactivate clouds */
ENVIRONMENT ACTIVATE 5010499 10:0.0

/* End Of Script */

Figure 2.6 Sample Script

9

level behaviors of 3D icons in ASCII text, than it is in binary format. Each script statement

is required to be on a separate line. Since most text editors are capable of handling lines up

to 132 columns, there is no reason for a single script statement to not fit all on one line.

There is no limit on number of lines per script file.

All script event statements in NPSNET-OASIS contain a procedural operator and the

required arguments for the procedural operator (Figure 2.7). Procedural operators are

OBJECT ACTIVATE 100 tree 79A-DN-123678 0.0 1:00.0

Procedural Arguments
Operator

Figure 2.7 General Syntax for Script Statements

classified into five groups -vehicle, weapon, object, environment, and script. All NPSNET-

OASIS procedural operators begin with the group name for rapid parsing and simplicity. A

listing of all script events can be found in Appendix A.

In the interest of clarity and readability, blank lines and comments are permitted

between statements. Comments are used to explain or describe the script event. Whenever

the symbol '/*' is encountered on a line, all characters from that point on, until the symbol

'*/' is reached, is consida.red to be a comment.

Case is not important in procedural operators and required arguments. All characters

are converted to lower 'ase for parsing and extraction. The only time case is important, is

when characters in script file narn.s are case sensitive for UNIX based input and output

disk operations.

10

III. OVERVIEW OF NPSNET-OASIS

A. SCRIPTING TOOLS

The NPSNET-OASIS system communicates with three scripting tools - the script

processor, the script generator, and the timekeeper (Figure 3.1). Each tool is independent of

NPSNET-OASIS .ieeee

SYSTEMTimeKeeper

Script Processor Script Generator

0

Script Files

Figure 3.1 The NPSNET-OASIS System

11

the other. The integration of the scripting tools, provides animators the required

mechanisms to record and playback scripts.

1. Script Processor

Hidden from the user, all functions of the script processor are accessed from the

NPSNET-OASIS system. Functions include reading script objects and assigning script files

to process. There is only one script file active in the script processor at any given instance.

However, multiple processors are allowed. On end of file, the script processor can be

assigned another script file from the NPSNET-OASIS system.

The script processor retum ;, script result after each read. Script results are based on

valid script statements or errors reading the script file. File errors are treated as ..nd of

scripts or inval;.1 script files. When an error occurs for a script statement, a message is

displayed on the standard output devie idicating type of erroi. followed by line nu .aber

and name of current script file (Figure 3.2). Messages provide users a tool for debugging

scripts. Description of script results and script errors are contained in Appendix A.

SCRIPT ERROR: Invalid OASIS Procedural Operator
L ine..J of file

Line Number Name of Script File Type of Error

Figure 3.2 Error Message

Script statements are read in line for line by the script processor. When blank lines are

encountered, tie script processor ignores them, and continues to read the script file.

Beginning with the symbol '/*' script comments are continuous script lines containing

information about script events or script options. The script processor treats each line ac a

comment until the termination symbol '*/' is reached. The user must be careful in using

12

script comments. A script comment with no termination symbol will include valid script

events until end of file. Script lines containing script events or script options are valid only

when both procedural operators and the required arguments are valid. The number of

arguments for each procedural operator are fixed Thus, incomplete or extra arguments will

make the script line invalid. In addition, incompiete format of a required argument will

preempt an error message by the script processor.

2. Script Generator

The script generator's primary purpose is to write script objects to an output file in

NPSNET-OASIS script format. Error checking does not exist since script objects contain

default values for all values not assigned in even, s. All script files generated from the script

generator are valid files for script processing. When several script files exist, a library can

be created by iincluding several script files into ore script. There are no specified maximum

number of lines per script file. The only limitation is the space available on disk.

3. System Timekeeper

As timestamps are processed for each script event, the system timekeeper adjusts them

for simulator interaction. Timestamps for each script event are assumed relative to the start

time of the input script file. When absolute, timestamps are relative to the start time of

NPSNET-OASIS system. The timekeeper uses the system clock of the graphics

workstations for all assignments of start times. Times received from system clocks are

based on total seconds and total microseconds since January 1, 1970 'Ref. 71.

There are two types of clock references - system and user. The difference between the

two, is that system clock reference is actual system time, and user clock reference is the

time selected by the user in seconds and microseconds. When selected in user clock

reference, the user has the option to change the start time for the NPSNET-OASIS system.

When changed, the timekeeper adjusts the new start time with the system clock. In addition,

the start times for the input script file and output script file are also changed to the same

13

start time as the NPSNET-OASIS system. When writing script files, timestamps are always

reference to the start time of the output script file.

In Figures 3.3 and 3.4, timestamp adjustments are illustrated for system clock

reference and user clock reference. The timestamp is converted to total seconds and total

imesamp f 1:01:5.5System Start Time
rimestamp_ of 1001:05 00:00:00 Sept 1, 1991 Timiestamp in Relative

TOOe Sees fUsecs + = Total Secs 1Usecs
Total Secs Usecs

665 500 86700000 683698266 [0

rimestamp of 10:01:055 iInput Script Start Time ietm nAslt

Total Secs Usecsi + =00:0Sp ,19 Total Secs IUsecsI
Total Secs. Usecst

665 000 6813698275S 600000I
5 50000683697610 100000

Figure 3.3 Illustration of Timestamp Adjustment Based on System Clock

imestamp of 10:01:055 System Start Time Timestamp in Reltv
Total Secs ____c + Total Sec secs = Total Sec s e

665 100000 0cl ___I__000
rimestamp of 10:01:055 Input Script Start Tim ~ Timestamp in Absolute

Total Secs Usecs + Total SecsjUsccs = Total Sees Usecs

665 500000 9 J600000 j675 100000

Figure 3.4 Illustration of Timestamp Adjustment Based on User Clock

14

microseconds. The total seconds and microseconds are used for timestamp adjustments

based on either relative or absolute time reference. In relative time reference with the

system clock, the timestamp is added to the start time of the input script file. In absolute

time reference, the timestamnp is added to the start time of the NPSNET-OASIS system. The

same procedure is also applied to the user clock reference.

B. STRUCTURE OF SCRIPT EVENTS

Each script event has a 3D icon identification, a position, a timestamp and attributes

to describe a task-level behavior event. Users of NPSNET-OASIS must be familiar with

the data structures and the information contained in them.

1. 3D Icon Identification

3D icon identifications include an object number, a host number, an object description,

and an object status. Object numbers are four digit values assigned to 3D icons by the visual

simulator to distinguish from other 3D icons. Host numbers are three digit values used in

identifying visual simulators in a network. When combined, a host number and an object

number provide an unique identification number to a 3D icon (Figure 3.5). Object

descriptions are descriptive names of 3D icons. NPSNET requires them for associating

OFF files for visual display. Supplementing world state information, object status is a

description of the current state on a 3D icon.

5011234
Host Number . L Object Identification

Number

Figure 3.5 The 3D Icon Identification Number

15

2. Event Position

Positions for a script event include grid coordinates and an elevation. Elevation,

represented in meters, is the altitude of an area above sea level. The primary military grid

reference system in the United States, the Universal Transverse Mercator (UTM), is a

world wide plane coordinate system based on the metric standard [Ref. 4]. The grid

coordinate system of UTM is adopted in NPSNET-OASIS (Figure 3.6). Each UTM grid

zone is a square area of six degrees in longitude by eight degrees in latitude. UTM

coordinates are designated by two or three characters. The last character, in alphabetic

notation, represents the latitude offset, and the beginning characters, in numeric notation,

represents the longitude offset. To further identify locations in each UTM grid zone, the

U.S. Army created the MGRS [Ref. 4]. MGRS subdivides UTM grid zones into 100,000

meter square areas designated by two letters. To complete the MGRS grid, UTM casting

and northing are used to designate which square meter area. Coordinates are in even digits

where the first half representing easting, and the second half, northing. Precision in UTM

coordinates requires five digits for easting and northing. In NPSNET-OASIS, easting and

northing coordinates with digits less than five, are appended with additional zeros (Figure

3.7).

79A -DN -12345 12345
Gridzone MGRS Easting Northing

Figure 3.6 UTM Coordinate Position

16

Appended Zeros

79A-DN -12366 12366
Gridzone MGRS Easting Northing

Figure 3.7 UTM Coordinate Position With Padded Zeros

3. Timestamp

Timestamps are based upon the 24-hour clock metaphor where times are represented

as strings [Ref. 1]. Each field of the timestamp string is represented by numeric characters

with leading zeros being optional. In Figures 3.8a-c, hours, minutes, and seconds of the

timestamp string are interpreted from right to left. Microseconds are interpreted from left

to right (Figure 3.8). Used in event scheduling, timestamps indicate when to execute the

event. In time delays, timestamps indicate the time durations of the script pauses, or the

time to begin reading scripts. In Figure 3.8, timestamps are listed in formats acceptable to

NPSNET-OASIS.

4. Event Attributes

Representing properties of continuous and transient events, attributes provide

additional information on script events. Attributes enable a 3D icon to be unique among

other 3D icons in simulation. Information such as headings and velocities of 3D icons are

affected by state changes of continuous events. Appearances of 3D icons are affected by

state changes of transient events. An example of a transient event is an explosion of a 3D

icon. The attributes for this event require the description type and the bounding area of the

explosion. See Appendix I for description of event attributes.

17

a. 10:32:11.527501
Hors Minutes Seconds Mkroseconds

b. 43:22.230492
TT7

Mi-nutes fSeconds m-o d

C. .33540823
Secnds Mi co ods

d. 254904
M .

Figure 3.5 Tinestamp Formats

C. SCRIPT OPTIONS

Script options, or directives, are used in script files for file operations, script system

defaults, and assigning values for timestamp adjustments. From Figure 2.6, the script is

modified to include all the script options available to NPSNET-OASIS (Figures 3.9 and

3.10). Syntax for each script option is listed in Appendix A.

1. ScriptAbort

Normal termination of NPSNET-OASIS requires all statements in the input script file

to be processed. However, the animator has the option to terminate the script by inserting

18

Description: Sample script of two X-1 tanks 'script.ml'
Host Id Number: 501
Simulator: NPSNET on IRIS VGX Workstation
Author: Phillip West,

/* Assign timestamp reference relative to start time of input script */
SCRIPT TINESTAMP relative

/* Assign default UTM gridzone and MGRS */
SCRIPTLOCATION II8-DN

/* Assign time factor of 50 percent for all timestamps */
SCRIP TTME_FACTOR 0.5

/* Assign time adjustment value of 10 seconds for all timestamps */
SCRIPT-TIMEADJUSTMENT 10.0

/* Activate clouds with velocity 5.0 km/h, heading 270.0 west */
ENVIRONMENT ACTIVATE 5010500 Cloud 270.0 5.0 34536783 1000.0 30.0

/* Activate two X-1 tanks */
VEHICLE ACTIVATE 5010001 Ml 090.0 40.0 344955 0.0 40.0
VEHICLE ACTIVATE 5010002 M1 090.0 40.0 345958 0.0 45.0

/* Change headings of M-1 tanks */
VEHICLE HEADING 5010001 135.0 344801 0.0 2:0.0
VEHICLEHEADING 501000" 120.0 344803 0.0 2:5.0

/* Change velocities of M-1 tanks */
VEHICLESPED 5010001 5.0 344670 0.0 6:0.0
VEHICLESPEED 5010001 5.0 344677 0.0 7:25.0

/* M-1 tanks passing by a building */
OBJECTACTIVATE 5010004 Building 344701 0.0 8:10.0
OBJECT DEACTIVATE 5010004 9:40.0

/* Script message for advance warning of upcoming script events */
SCRIPT MESSAGE Activating column of jeeps

/* Script call for column of jeeps */
SCRIPT CALL script-2 .ml

/* Continue script with next script file */
SCRIPT-CHAIN script-l .ml

Figure 3.9 Sample Script With Script Options

19

*** ****** * * *** * *********** *** ********* ********** *****

Description: Sample script of two M-1 tanks 'script-l.ml'
Host Id Number: 501
Simulator: NPSNET on IRIS VGX Workstation
Author: Phillip West

/* X-I tanks passing by a palm tree */
OBJECT ACTIVATE 5010003 PalmTree 345700 0.0 22:0.0
OBJECT DEACTIVATE 5010003 22:35.0

/* Change velocities of X-1 tanks */
VEHICLE SPEED 5010001 5.0 345670 0.0 26:0.0
VEHICLESPEED 5010001 5.0 345677 0.0 27:25.0

/* Deactivate X 1 tanks */
VEHICLE DEACTIVATE 5010001 29:45.0
VEHICLE_DEACTIVATE 5010002 29:50.0

/* Deactivate clouds */
ENVIRONMENT ACTIVATE 5010500 30:0.0

/* Script delay for duration of 5 minutes prior to termination */
SCRIPT DELAY 5:0.0 absolute

/* Write to output script file message for next script processing */
SCRIPT FILE WRITE SCRIPT MESSAGE End of Script

/* Terminate script */
SCRIPT ABORT

********* ** ** ********** **** ****** ******** ****** *************

Description: Sample script of multiple jeeps 'script-2.ml'
Host Id Number: 501
Simulator: NPSNET on IRIS VGX Workstation
Author: Phillip West* ******* ******** * *********** ** ****** ******* **** ***** ******* *******

/* Activate jeep vehicle */
VEHICLEACTIVATE 5010010 Jeep 090.0 40.0 345678 0.0 10:0.0

/* Repeat script for 10 iterations with total 11 separate vehicles */
SCRIPT REPEAT 10 1 1:0.0

Figure 3.10 Sample Script With Script Options

20

SCRIPT.ABORT. This script directive has no arguments. When encountered, all script

files are closed, and a script result of END_OF_SCRIPT is returned to the system.

2. Script-Call

The directive SCRIPT_CALL is a subscript call, similar to a procedure call in a high-

level programming language. The argument for this directive is a string containing the

script file name. The calling script file is suspended during processing of the subscript and

control returns on subscript's end of file. This directive supports modular scripting in

NPSNET-OASIS.

3. Script Chain

Linking of one input script file to another requires the script directive

SCRIPTCHAIN. The required argument is a string containing the script file name. After

the chained script file is successfully opened, the other script file is closed. This directive

is useful for combining small script files into one large script.

4. Script Repeat

Similar to a counter-controlled loop, the script directive SCRIPTREPEAT allows

scripts to be processed repeatedly. There are three arguments for SCRIPTREPEAT -

iterations, object number adjustment, and timestamp adjustment. Iterations are values for

the number of times repeating the same script. Object number adjustment is the increment/

decrement value for all 3D icon identification numbers. Similar to the script option

SCRIPTTIMEADJUSTMENT, timestamp adjustment is the increment/decrement of

timestamps for each repeated script event. All script events in script chains and script calls

are affected by SCRIPT_REPEAT. This directive is useful for repeating the entire script,

or repeating a short series of script events.

5. ScriptTimestamp

SCRIPT..TIMESTAMP, with the selected string as argument, is used to change time

reference in script processing. The default time reference for NPSNET-OASIS system is

21

"relative". The other option is "absolute".Relative time reference is for all timestamp"

adjustments based on input script start time. Absolute time reference is for all timestamp

adjustments based on system start time.

6. Script TimeAdjustment

Changing event timestamps throughout the script requires

SCRIPTTIMEADJUSTMENT to be inserted prior to selected statements. An argument

in timestamp format, is used for adding to event timestamps. To stop timestamp

adjustments, requires another SCRIPT_TIMEADJUSTMENT and an argument of zero.

7. ScriptTime.Factor

Another option for adjusting timestamp, is the use of SCRIPT_TIMEFACTOR.

With a floating-type numeric argument, SCRIPT_TIME_FACTOR, provides the time

factor percentage for each event timestamp. This option is useful for incrementing or

decrementing speed of script processing. For example, the value of 2.0 causes two seconds

of script time to be four seconds of wall clock time.

8. ScriptDelay

There are two arguments required for SCRIPT_DELAY - timestamp and delay type.

Delay type is either "absolute" or "relative". In absolute mode, the current script is

suspended until the time specified by the timestamp. In relative mode, the current script is

suspended for the time duration specified by the timestamp.

9. Script-Location

Upon initialization, the NPSNET-OASIS system assigns the default UTM gridzone

and MGRS with strings "10S" and "DN" respectfully. Defaults will be assigned when an

UTM gridzone and/or MGRS are not included in the event position. Replacing one or both

system defaults requires SCRIPT_LOCATION to be used in the script.

22

10. ScriptFileWrite

Script objects recorded to an output script file include script events and script

comments. There are no script options or blank lines. SCRIPT_FILE_WRITE provides

animators the capability to include any type of script statements in a recorded script. If there

is no output script file, then an error message is displayed.

11. ScriptMessage

While developing software, programmers include statements in their source code for

tracing and debugging. In NPSNET-OASIS, animators have the same capability by

allowing script messages to be displayed on a standard output device. Messages can include

any text desired by the animator. One suggestion is to use script messages prior to selected

script events. Messages with information on upcoming events provide advanced warning

of what to expect in visual simulation.

23

IV. IMPLEMENTATION OF NPSNET-OASIS

A. OVERVIEW

The current NPSNET system runs across the entire Silicon Graphics, Inc. (SGI) IRIS

4D line [Ref. 10]. NPSNET-OASIS was developed with no graphics function calls, thus

allowing application on various types of platforms including non-graphics workstations.

Networking allows the different platforms to interact on other workstations in the

Graphics and Video Laboratory.

For autonomous vehicle control, the network harness process of NPSNET enables

NPSNET-OASIS to provide scripted autonomous players in visual simulation [Ref. 10].

The network harness uses Ethernet TCP/IP multicast packets designed for the NPSNET

system. The purpose of this process is to listen to the packets broadcast on the network and

to build an internal model of the state of the world from those packets. Script events from

NPSNET-OASIS are transformed to message packets and broadcasted via the network

harness. In addition, packets received are transformed and recorded to an output script.

B. DATA STRUCTURES

The data s,.-uctures required for the script event and message packet transformations

are contained in Appendices I through K. Currently in NPSNET, only vehicle script

events are used for autonomous vehicle control. As further development of NPSNET

continues, other script events are integrated to allow enhanced modeling of the world.

C. NPSNET-OASIS NETWORK INTERFACE

As shown in Figure 4.1, NPSNET-OASIS is integrated into NPSNET by coupling

with the NPSNET-OASIS network interface. The network interface provides the

24

NETWORK

NT iNetwork iNetwork
DaemonDaemon

NPSNET

.,.Script [.Script

rrocesor G enerator[

Script Files

Figure 4.1 NPSNET-OASIS Network Interface

synchronization in playbacks and recordings of NPSNET-OASIS scripts. Using the

required data structures, transformations of all script event message packets are processed

in the network interface.

1. Internal Data Structures

Several NPSNET-OASIS network interfaces can interact with NPSNET with each

containing its own internal data structures for representing the state of the world. Referred

to as the local state of the world, the data structure contains all locations and vehicle types

25

for NPSNET-OASIS. Additionally, another internal data structure is used for indicating

which vehicle icons are recorded on script. First time script events of vehicle icons

require the script event VEHICLE.-ACTIVATE to be recorded on scrit. Playback of

scripts requires WEHICLEACTIVATE to set the vehicle attribute alive for the vehicle

icon to be active in NPSNET. The network interface updates the local data structures prior

to each message broadcast and prior to recording on script.

2. Message Packets

Currently there is only one type of message packet used in NPSNET for scripted

autonomous players - vehicle update. Each vehicle script event is processed as a vehicle

update regardless of event type. The encoding of the message packet is described in

Appendix K.

There are three types of message packets received from the network - stop script,

time synclonization, and vehicle update. Stop script message enables the NPSNET-

OASIS network interface to detach from the network. Time synchronization message

assigns the initial start time of NPSNET. NPSNET-OASIS sets all start times of script

files and script system to the time specified in the message. Vehicle update message is

used to update the local state of the world and to record the script event.

3. Operation of Network Interface

Referring to Figure 4.2, the NPSNET-OASIS network interface is operational until

end of input script file or a stop script message packet. If the network interface was

initialized with no input script file, then a stop script message is required. Prior to reading

script events, the network is checked for incoming message packets. When message

packets exist, the local state of the world is updated and the transformed script events are

recorded. All script events from the input script file are transformed to message packets

26

and sent to the network. System time for NPSNET-OASIS is based on the user clock

reference.

27

void MonitorNpsnetNetwork()

AddProcessToNetworko;

SetSystemStartTime(StartTicks /HZ, StartTicks % HZ);

while(ActiveNetworklnterface)(

C'irrentTicks =(times(&SysTimes) - StartTicks);

ReceiveAndProcessMessageso;

if(InputScriptExists && ActiveNetworklnterface){

ReadAndProcessScriptEvent(CurrentTicks, VehicleArray);

switch(GetScriptResulto)(
case ENDOF _SCRIPT:

InputScriptExists = FALSE;
if(!OutputScriptExists)

ActiveNetworkInterface =FALSE;

break;
case SCRIPTVALID:

WriteScriptMessage(GetlconL]Do, GetEventiD0);
SendUpdateMessage(GetlconIDo);
break;

case SCRIPTERROR:
case SCRIPTINDELAY:
case NOSCRIPTEVENT:
default:

break;
llend switch

/endif

/endloop

DetachProcessFromNetworko;

fl end MonitorNpsnetNetwork

Figure 4.2 Network Interface Monitor Routine

28

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSION

The NPSNET-OASIS system has fulfilled the initial requirement of providing tools to

record and playback scripts. The NPSNET-OASIS network interface provides users of

NPSNET the capability to generate scripted autonomous players in visual simulations.

The study in applying object-oriented methodologies in a practical design such as

NPSNET-OASIS was beneficial for extensibility and reusability of existing source code.

This was proven when the network interface for NPSNET-OASIS was built on top of a

script system. As new software developments evolve in the Graphics and Video

Laboratory, changes can be made in NPSNET-OASIS with little modifications.

B. LIMITATIONS

There are two limitations in NPSNET-OASIS. First, using the classes of NPSNET-

OASIS requires C++ throughout software development. Existing software in the Graphics

and Video Laboratory such as NPSNET must be converted to C++ in order to fully

integrate NPSNET-OASIS in code. The second limitation is that NPSNET is currently

unable to use all the script events in NPSNET-OASIS. The data structures for NPSNET

are limited in containing the information for all types of continuous and transient events.

In addition, the capabilities for transient events such as collisions and explosions are still

under development. Current design of the NPSNET-OASIS network interface permits only

continuous events of vehicle icons, such as vehicle heading and velocity changes.

C. FUTURE DIRECTIONS

Current implementations of NPSNET-OASIS are in executable load modules with no

graphics functions. Execution of load module requires typing the module name at the

command prompt. There are no output displays other than error messages generated during

29

processing and recording of scripts. Future effort could be placed on developing some

interactive tool for using the script tools of NPSNET-OASIS, such as a graphics script

editor or a syntax directed editor.

The NPSNET-OASIS network interface is implemented only for the SGI IRIS

graphics workstations. Porting the software to other platforms should be an easy matter.

Suggestion is to modify the source code of NPSNET-OASIS for providing scripted

autonomous players from a different platform.

30

APPENDIX A

NPSNET-OASIS Script Events, Results, and Errors

Note: Back slashes ' in syntax or examples indicate continuation on the same line.

Vehicle Events

VEHICLE ACTIVATE

VEHICLEACTIVATE <vehicle number> <type description> <heading> \
<velocity> <UTM coordinates> <elevation> I
<timestamp>

Description - New vehicle icon activated for visual simulation.

Example- VEHICLE _ACTIVATE 200 M! 235.0 5.0 1234567890 0.0 5:0.0

VEHICLE DEACTIVATE

VEHICLEDEACTIVATE <vehicle number> <timestamp>

Description - Vehicle icon deactivated from visual simulation.

Example - VEHICLE DEACTIVATE 200 5:0.0

VEHICLE MODIFICATION

VEHICLEMODIFICATION <vehicle number> <component name> I
<rotation X direction> \
<rotation Y direction> <rotation Z direction> I
<translation X direction>
<translation Y direction> I
<translation Z direction> <UTM coordinates> I
<elevation> <timestamp>

Description - Vehicle icon is modified by changing the degrees of freedom on one of it's

components.

31

Example - VEHICLEMO0DIFICATION 200 turret 10.0 10.0 10.0 25.0 25.01
25.0 1234567890 0.0 5:0.0

VEHICLZ PITCH

VEHICLE PITCH <vehicle nt-.,oer> <pitch angle> (UTM coordinates>1
<elevation> <timestamp>

Description - Pitch angle of vehicle icon is changed. Negative values indicated downward

angle and positive values indicate upward angle.

Example - VEHICLE PITCH 200 10.0 1234567890 0.0 5:0.0

VEHI CLI ROLL

VEHICLE ROLL <vehicle number> <roll angle> <roll direction> ~I
<UTM coordinates> (elevation> <tirnestairp>

Description - Roll angle of vehicle icon is changed. The direction of the roll is either

'szbd', 'port', or 'none'. Direction 'none' indicates a roil angle of 0.0.

Examples - VEHICLE ROLL 200 10.0 stbd 1234567890 0.0 5:0.0

VEHICLEROLL 200 10.0 port 1234567890 0.0 5:0.0

VEHICLE ROLL 200 0.0 none 1234567890 0.0 5:0.0

VEICI POSITION

VEHICLEPOSITION <vehicle number> cUTM coordinates> (elevation>
<timestairp>

Description -'The position of vehicle icon is updated.

Examples- VEHICLE POSITION 200 79A-DN-1234567890 0.0 5:0.0

VEHILE OSITON 00 7A-134568900.0 :0.

VEHICLE POSITION 200 D9-1234567890 0.0 5:0.0

32

VEHICLEHEADING

VEHICLEHEADING <vehicle number> <heading> <UTM coordinates> \
<elevation> <timestamp>

Description - The heading of vehicle icon is changed. All headings are from 0.0 to 359.9

degrees relative to North. For NPSNET, degrees are required to be in radians.

Example - VEHICLEHEADING 200 270.0 79A-DN-1234567890 0. 0 5: 0. 0

VEHICLESPEED

VEHICLESPEED <vehicle number> <velocity> <UTM coordinates>
<elevation> <timestamp>

Description - The velocity of vehicle icon is changed. All velocities are in kilometers per

hour.

Example. VEHICLESPEED 200 10.0 79A-DN-1234567890 0. 0 5: 0. 0

VEHICLETRAIL

VEHICLE TRAIL <vehicle number> <trail description> \
<bound area X direction> \
<bound area Y direction>\
<bound area Y direction> <offset X direction>
<offset Y direction> <offset Z direction>
<Ulf coordinates> <elevation> <timestamp>

Description - The trail of vehicle icon is activated for visual simulation. Trails such as dust

or wake requires attributes for bounding area for size and vehicle offset.

Example- VEHICLETRAIL 200 mediuumdust 10.0 10.0 1 0.0 0.0 0.0 0.0\
1234567890 0.0 5:0.0

VEHICLE COLLISION

VEHICLECOLLISION <vehicle number> <description result>
<UTM coordinates> <elevation> <timestamp>

33

Description - This event is a transient event indicating vehicle icon collision with another-

icon.

Example - VEHICLE COLLISION200 destroyed 79A-DN-1234567890 0. 0 5: 0. 0

VEHICLE EXPLOSION

VEHICLEEXPLOSION <vehicle number> <explosion description> \
<bound area X direction>
<bound area Y direction> \
<bound area Y direction> <UTM coordinates>
<elevation> <timestamp>

Description - This event is a transient event of a vehicle icon explosion. Attributes

required are explosion type and bounding area for explosion.

Example- VEHICLE EXPLOSION 200 largescale 10.0 10.0 10.0 1234567890\
0.0 5:0.0

VEHICLE FLAMING

VEHICLE FLAMING <vehicle number> <description of fire> \
<bound area X direction> \
<bound area Y direction>\
<bound area Y direction> <offset X direction> \
<offset Y direction> <offset Z direction> \
<UTM coordinates> <elevation> <timestamp>

Description - This event is a transient event of a vehicle icon on fire. Attributes required

are type of flames, bounding area of the flames, and the vehicle offset to the flames.

Example - VEHICLE_FLAMING 200 mediumflame 10.0 10.0 10.0 0.0 0.0 0.0\
1234567890 0.0 5:0.0

VEHICLE SMOKING
VEHICLE_SMOKING <vehicle number> <description of smoke> \

<bound area X direction> \
<bound area Y direction> \
<bound area Y direction> <offset X direction>
<offset Y direction> <offset Z direction>
<UTM coordinates> <elevation> <timestamp>

34

Description - This event is a transient event of a vehicle icon emitting smoke. Attributes

required are smoke type, bounding area of the smoke, and the vehicle offset to the smoke.

Example- VEHICLESMOKING 200 mediumsmoke 10.0 10.0 10.0 0.0 0.0 0.0\
1234567890 0.0 5:0.0

VEHICLE DESTROYED

VEHICLE DESTROYED <vehicle number> <UTM coordinates> <elevation> \
<timestamp>

Description - Not removed from visual simulation, the vehicle icon is destroyed.

Example - VEHICLEDESTROYED 1234567890 0.0 5:0.0

VEHICLE FUEL

VEHICLE FUEL <vehicle number> <fuel amount> <timestamp>

Description - The fuel state is changed on a vehicle icon. Amount of fuel left in vehicle

icon is indicated in liters.

Example - VEHICLEFUEL 200 10.0 5:0.0

VEHICLE AMUNITION

VEHICLEAMMUNITION <vehicle number> <weapon name> <weapon rounds> \
<timestamp>

Description - The ammunition state is changed on a vehicle icon. Weapon rounds of

weapon name indicate current number assigned to the vehicle icon.

Example. VEHICLE_ AMUNITION 200 turret 10 5:0.0

VEHICLEUPDATE

VEHICLE UPDATE <vehicle number> <vehicle status> <heading> I
<velocity> <pitch angle> <roll angle> \
<roll direction> <UTM coordinates> <elevation> \
<timest amp>

35

Description - Update status on a vehicle icon.

Examples- VEHICZEUPDATE 200 inmotion 260.0 10.0.0 0.0 none 456789\
0.0 5:0.0

VEHICLESTATUS QUERY

VEHICLE_STATUSQUERY <vehicle number> <timestamp>

Description - This event queries status of a selected vehicle icon.

Example- VEHICLE_STATUSQUERY 200 5: 0. 0

Weaon] Events

WEAPONLAUNCH

WEAPONLAUNCH <weapon number> <source id> <description>\
<heading> <heading type> <velocity> I
<pitch angle> <UTM coordinates> <elevation> k
<timestamp>

Description - Weapon is launch from a source vehicle icon with initial velocity and

headings. Headings are indicated in relative 'R' or absolute 'A'.

Examples- WEAPONLAUNCH 300 200 sm-2 260.0 A 500.9 45.0 456789 3. 0
5:0.0
WEAPONLAUNCH 300 200 sm-2 260.0 R 500.9 45.0 456789 3.0\
5:0.0

WEAPON IMPACT

WEAPON_IMPACT <weapon number> <source id> <UTM coordinates>\
<elevation> <timestamp>

Description - Weapon impact terminating weapon icon.

Example- WEAPONIMPACT 300 200 456789 3.0 5:0.0

36

WEAPONEXPLOSION

WEAPONEXPLOSION <weapon number> <source id> <UTM coordinates>
<elevation> <timestamp>

Description - Weapon explosion terminating weapon icon.

Example- WEAPONEXPLOSION 300 200 456789 3.0 5:0.0

WEAPONUPDATE

WEAPONUPDATE <weapon number> <source id> <weapon status> \
<heading> <heading type> <velocity> \
<pitch angle> <UTM coordinates> <elevation> \
<timestamp>

Description - Update status on a weapon icon.

Examples- WEAPONUPDATE 300 200 active 260.0 A 300.0 35.0 456789 3.0 5:0.0

WEAPON UPDATE 300 200 active 260.0 R 300.0 35.0 456789 3.0 5:0.0

WEAPONSTATUS.QUERY

WEAPONSTATUSQUERY <weapon number> <source id> <timestamp>

Description - This event queries status of a selected weapon icon.

Examples- WEAPONSTATUS QUERY 300 200 5:0.0

Miscellaneous Object Events

OBJECT ACTIVATE

OBJECTACTIVATE <object number> <object description> I
<UTM coordinates> <elevation> <timestarnp>

Description - New miscellaneous object icon activated for visual simulation.

Example- OBJECTACTIVATE 250 building 1234567890 5:0.0

37

OBJECTDEACTIVATE

OBJECTDEACTIVATE <object number> <timestamp>

Description - Miscellaneous object icon deactivated from visual simulation.

Example- OBJECTDEACTIVATE 250 5:0.0

OBJECT COLLISON

OBJECTCOLLISION <object number> <description result>\
<UTM coordinates> <elevation> <timestamp>

Description -This event is a transient event indicating miscellanious object icon collision with

another icon.

Example - OBJECTCOLLISION 250 destroyed 79A-DN-1234567890 0. 0 5: 0. 0

OBJECT EXPLOSION

OBJECTEXPLOSION <object number> <explosion description> I
<bound area X direction> k
<bound area Y direction> k
<bound area Y direction> <UTM coordinates>
<elevation> <timestamp>

Description - This event is a transient event of a miscellaneous object icon explosion.

Attributes required are explosion type and bounding area for explosion.

Example- OBJECT EXPLOSION 250 largescale 10.0 10.0 10.0 12345678 0.0 5:0.0

OBJECT FLAMING

OBJECTFLAMING <object number> <description of fire> k
<bound area X direction> \
<bound area Y direction> k
<bound area Y direction> <offset X direction> I
<offset Y direction> <offset Z direction>\
<UTM coordinates> <elevation> <timestamp>

38

Description - This event is a transient event of a miscellaneous object icon in flames.

Attributes required are flame type, bounding area of the smoke, and the object offset of the

flames.

Example- OBJECTFLAMING 250 largescale 10.0 10.0 10.0 0.0 0.0 O.0\
1234567890 0.0 5:0.0

OBJECT SMOKING

OBJECTSMOKING <object number> <description of smoke> k
<bound area X direction> \
<bound area Y direction>
<bound area Y direction> <offset X direction> I
<offset Y direction> <offset z direction>
<UTM coordinates> <elevation> <timestamp>

Description - This event is a transient event of a miscellaneous object icon emitting smoke.

Attributes required are smoke type, bounding area of the smoke, and the object offset of the

smoke.

Example- OBJECTSMOKING 250 mediumsmoke 10.0 10.0 10.0 0.0 0.0 0.O\
1234567890 0.0 5:0.0

OBJECT UPDATE

OBJECTUPDATE <object number> <object status> \
<UTM coordinates> <elevation> (timestamp>

Description - This event queries status of a selected miscellaneous object icon.

Examples- OBJECTUPDATE 250 active 1234567890 0.0 5:0.0

OBJECTSTATUS QUERY

OBJECTSTATUS QUERY <object number> <timestamp>

Description - This event queries status of a selected miscellenous object icon.

Example. OBJECTSTATUSQUERY 250 5:0.0

39

Environment Events

ENVIRONMENT ACTIVATE

ENVIRONMENTACTIVATE <environment object number> <type description> \
<heading> <velocity> <UTM coordinates> \
<elevation> <timestamp>

Description - New environment effect icon is activated for visual simulation.

Example- ENVIRONMENT_ACTIVATE 400 cloud 345.0 5.0 1234567890 5:0.0

ENVIRONMENT DEACTIVA.

ENVIRONMENT DEACTIVATE <environment object number> <timestamp>

Description - Environment effect icon of vehicle number is deactivated from visual
simulation.

Example - ENVIRONMENT_DEACTIVATE 400 5:O.0

Script Options
SCRIPT ABORT

SCRIPT ABORT

Description - Normal termination of NPSNET-OASIS requires all statements in the input

script file to be processed. However, the animator has the option to terminate the script by

inserting SCRIPTABORT. This script directive has no arguments. When encountered, all

script files are closed, and a script result of END_OF_SCRIPT is returned to the system.

Example - SCRIPTABORT

SCRIPT CALL

SCRIPT CALL <filename for script call>

Description - The directive SCRIPT-CALL is a subscript call, similar to a procedure call

40

in a high-level programming language. The argument for this directive is a string

containing the script file name. The calling script file is suspended during processing of the

subscript. Only one script is processed at any given tin. Script file control returns to the

caller on subscript's end of file. This directive supports modular scripting in NPSNET-

OASIS.

Example - SCRIPT_CALL script-i .ml

SCRIPT CHAIN

SCRIPTCHAIN <filename for script chaining>

Description - Linking of one input script file to another requires the script directive

SCRIPT_CHAIN. The required argument is a st.' g containing the script file name. After

the chained script file is successfully opened, the other script file is closed. This directive

is useful for combining small script files into one large script.

Example- SCRIPT CHAIN script-i .ml

SCRIPT REPEAT

SCRIPT REPEAT <iterations> <object number adjustment> I
<time adjustment>

Similar to a counter-controlled loop, the script directive SCRIPT-REPEAT allows scripts

to be processed repeatedly. There are three arguments for SCRIPT_REPEAT - iterations,

object number adjustment, and timestamp adjustment. iterations are values for the number

of times repeating the same script. Object number adjustment is the increment/decrement

value for all 3D icoi identification numbers. Similar to the script option

SCRIPT_TIMEADJUSTMENT, timestamp adjustment is the increment/decrement of

timestamps for each repeated script event. All script events in script chains and script calls

are affected by SCRIPT_REPEAT. This directive is useful for repeating the entire script,

or repeating a short series of script events.

41

Example- SCRIPTREPEAT 10 1 2:0.0

SCRIPT LOCATION

SCRIPTLOCATION <new default UTM gridzone and/or MGRS>

Description - Upon initialization, the NPSNET-OASIS system assigns the default UTM gridzone

and MGRS with strings "10S" and "DN" respectfully. Defaults will be assigned when an UTM

gridzone and/or MGRS are not included in the event position. Replacing one or both system

defaults, requires SCRIPT-LOCATION to be used in the script.

Examples - SCRIPTLOCATION 79A-DN

SCRIPT LOCATION 79A

SCRIPT LOCATION DN

SCRIPT TIMESTAMP

SCRIPT TIMESTAMP <time reference for script timestamps>

Description - The default time reference for NPSNET-OASIS system is "relative". The other

option is "absolute". SCRIPT_TIMESTAMP, with the selected string as argument, is used to

change time reference in script processing. Relative time reference is for all timestamp adjustments

based on input script start time. Absolute time reference is for all timestamp adjustments based on

system start time.

Examples - SCRIPT_TIMESTAMP relative

SCRIPTTIMESTAMP absolute

SCRIPT TIME FACTOR

SCRIPT TIMEFACTOR <time factor value>

Description - Another option for adjusting timestamp, is the use of SCRIPTTIMEFACTOR.

With a floating-type numeric argument, SCRIPTTIMEFACTOR, provides the time factor

percentage for each event timestamp. This option is useful for incrementing or decrementing speed

of script processing.

42

Example - SCRIPTTIME FACTOR 0. 5

SCRIPTTIME ADJUSTMENT

SCRIPTTIMEADJUSTMENT <timestaeap>

Description - Changing event timestamps throughout the script requires

SCRIPT_TIMEADJUSTMENT to be inserted prior to selected statements. An argument in

timestamp format, is used for adding to event timestamps. To stop timestamp adjustments, requires

another SCRIPTTIMEADJUSTMENT and an argument of zero.

Example - SCRIPT TIME ADJUSTMENT 10: 0. 5

SCRIPT DELAY

SCRIPT DELAY <timestamp> <type of script delay>

Description -There are two arguments required for SCRIPT_DELAY - timestamp and delay type.

Delay type is either "absolute" or "relative". In absolute, the current script is suspended until the

time specified by the timestamp. In relative, the current script is suspended for the time duration

specified by the timestamp.

Examples -SCRIPT DELAY 10:0.0 relative

SCRIPT DELAY 25:24.0 absolute

SCRIPT FILE WRITE

SCRIPTFILE WRITE <script line>

Description - Script objects recorded to an output script file include script events and script

comments. There are no script options or blank lines. SCRIPT_FILEWRITE provides animators

the capability to include any type of script statements in a recorded scripi. If there is no output script

file, then an error message is displayed.

Example - SCRIPT FILEWRITE SCRIPTMESSAGE end of script

43

SCRIPT MESSAGE

SCRIPTMESSAGE <message>

Description - While developing software, programmers include statements in their source code for

tracing and debugging. In NPSNET-OASIS, animators have the same capability by allowing script

messages to be displayed on a standard output device. Messages can include any text desired by

the animator. One suggestion is to use script messages prior to selected script events. Messages

with information on upcoming events provide advanced warning of what to expect in visual

simulation.

Example - SCRIPTMESSAGE End Of Script

44

ScrioResults

SCRIPT ERROR

SCRIPTERROR is returned from NPSNET-OASIS when an input/output file error occurred or a

script statement is invalid. File errors occur if unable to open or close a file. Invalid script

statements include invalid syntax for script comments, invalid procedural operators, invalid

arguments for a procedural operator, and invalid formats for arguments.

END OFSCRIPT

On end of script, which includes processing of all input script files, a result of ENDOFSCRIPT

is returned.

SCRIPT IN DELAY

SCRIPTINJDELAY is returned when processing of script files are suspended.

SCRIPT VALID

For a result of SCRIPT-VALID, script statements are of valid syntax.

NO SCRIPT EVENT

An option for classes built on top of NPSNET-OASIS, NOSCRIPT_EVENT is returned when'

script processing is suspended or a script event is not ready for return. Used in the NPSNET-

OASIS network interface, NO-SCRIPTEVENT is returned when the script event is not ready for

multicast.

45

NPSNET-OASIS can only have one main input script file assigned. If another is assigned then the

following is displayed:

SCRIPT ERROR: Only one main script permitted to be open.

The following message is displayed if the main script file does not exist. Possible errors can

include file does not exist, or some characters of the file name are of upper case.

SCRIPT ERROR: Unable to open main script file 'filename'.

When NPSNET-OASIS is unable to close a script file a message is displayed.

SCRIPT ERROR: Unable to close 'filename'.

There are enor messages for invalid file opens for script chaining or script call. In addition, another

line is displayed informing the line number and file name of the script file containing the script

option. Messages are as follows:

SCRIPT ERROR: Unable to open script 'filename' for chaining.

SCRIPT ERROR: Unable to open script filename" for script call.

Script events to be recorded require an output script file. If the file does not exist, then the

following error message is displayed:

SCRIPT ERROR: No output file opened for script' generation.

For recording scripts, the following message is displayed if a procedural operator of a script event

does not exist.

SCRIPT ERROR: Invalid event for script generation.

46

If the script statement is not a script comment or a valid script procedural operator, then the

following message is displayed:

SCRIPT ERROR: Invalid OASIS Procedural Operator.

For a valid script comment, the start symbol '/t* ind the termination symbol '*/' must exist. In

addition, no nesting of comments are permitted. When the termination symbol is encountered by

the script processor, the rest of the script line is checked for invalid characters. Messages are as

follows:

SCRIPT ERROR: Invalid characters after script comment end symbol.

SCRIPT ERROR: Encountered another script comment beginning.

SCRIPT ERROR: Script comment with no end symbol.

When script statements contain valid procedural operator, chances are that required arguments are

missing, some arguments are of invalid format, or too many arguments. If this should happen, then

an error message is displayed followed by another line containing line number and name of input

script file. There is a separate error message for each procedural operator. Messages are as

follows:

SCRIPT ERROR: Invalid parameters for environmentactivate.

SCRIPT ERROR: Invalid parameters for environmentdeactivate.

SCRIPT ERROR: Invalid parameters for vehicleactivate.

SCRIPT ERROR: Invalid parameters for vehicledeactivate.

SCRIPT ERROR: Invalid parameters for vehiclemodification.
SCRIPT ERROR: Invalid parameters for vehicle_pitch.

SCRIPT ERROR: Invalid parameters for vehicle roll.

SC1RIPT ERROR: Inva'd parameters for vehicle-rosition.

SCRIPT ERROR: Invalid parameters for vehicle_heading.

SCRIPT ERROR: Invalid parameters for vehicle-speed.

SCRIPT ERROR: Invalid parameters for vehicle_trail.

SCRIPT ERROR: Invalid parameters for vehicle_collision.

47

SCRIPT ERROR: Invalid parameters for vehicle explosion.

SCRIPT ERROR: Invalid parameters for vehicleflaming.

SCRIPT ERROR: Invalid parameters for vehiclesmoking.

SCRIPT ERROR: Invalid parameters for vehicle destroyed.

SCRIPT ERROR: Invalid parameters for vehiclefuel.

SCRIPT ERROR: Invalid parameters for vehicleammunition.

SCRIPT ERROR: Invalid parameters for vehicle update.

SCRIPT ERROR: Invalid parameters for vehiclestatusquery.

SCRIPT ERROR: Invalid parameters for object activate.

SCRIPT ERROR: Invalid parameters for objectdeactivate.

SCRIPT ERROR: Invalid parameters for objectcollision.

SCRIPT ERROR: Invalid parameters for object-explosion.

SCRIPT ERROR: Invalid parameters for object flaming.

SCRIPT ERROR: Invalid parameters for objectsmoking.

SCRIPT ERROR: Invalid parameters for object-update.

SCRIPT ERROR: Invalid parameters for objectstatus query.

SCRIPT ERROR: Invalid parameters for scripttime factor.

SCRIPT ERROR: Invalid parameters for scripttime adjustment.

SCRIPT ERROR: Invalid parameters for scriptdelay.

SCRIPT ERROR: Invalid parameters for scriptabort.

SCRIPT ERROR: Invalid parameters for scriptcall.

SCRIPT ERROR: Invalid parameters for scriptchain.

SCRIPT ERROR: Invalid parameters for scriptrepeat.

SCRIPT ERROR: Invalid parameters for scripttimestamp.

SCRIPT ERROR: Invalid parameters for scriptlocation.

SCRIPT ERROR: Invalid parameters for weapon-launch.

SCRIPT ERROR: Invalid parameters for weapon-impact.

SCRIPT ERROR: Invalid parameters for weapon-explosion.

SCRIPT ERROR: Invalid parameters for weapon-update.

SCRIPT ERROR: Invalid parameters for weapon status query.

48

APPENDIX B
NPSNET-OASIS Sample Scripts

File: script.ml
Description: Sample script of two M-1 tanks in motion
Host Id Number: 501
Simulator: NPSNET on IRIS VGX Workstation
Author: Phillip West

/* Assign timestamp reference relative to start time of input script */
SCRIPTTIMESTAMP relative

/* Assign default UTM gridzone and MGRS */
SCRIPTLOCATION 1IS-DN

/* Assign time factor of 50 percent for all timestamps */
SCRIPTTIMEFACTOR 0.5

/* Assign time adjustment value of 10 seconds for all timestamps */
SCRIPTTIMEADJUSTMENT 10.0

/* Activate clouds with velocity 5.0 km/h, heading 270.0 west */
ENVIRONMENT ACTIVATE 5010500 Cloud 270.0 5.0 34536783 1000.0 30.0

/* Activate two M-1 tanks */
VEHICLE ACTIVATE 5010001 Ml 090.0 40.0 344955 0.0 40.0
VEHICLEACTIVATE 5010002 M1 090.0 40.0 345958 0.0 45.0

/* Change headings of M-1 tanks */
VEHICLE HEADING 5010001 135.0 344801 0.0 2:0.0
VEHICLEHEADING 5010002 120.0 344803 0.0 2:5.0

/* Change velocities of M-1 tanks */
VEHICLESPEED 5010001 5.0 344670 0.0 6:0.0
VEHICLESPEED 5010001 5.0 344677 0.0 7:25.0

/* M-I tanks passing by a building */
OBJECTACTIVATE 5010004 Building 344701 0 8:10.0
OBJECTDEACTIVATE 5010004 9:40.0

/* Script message for advance warning of upcoming script events */
SCRIPTMESSAGE Activating column of jeeps

/* Script call for column of jeeps */
SCRIPTCALL script-2.jeeps

49

/* Continue script with next script file */
SCRIPTCHAIN script-l.ml

File: script-l.ml
Description: Sample script of two M-1 tanks in motion
Host Id Number:' 501
Simulator: NPSNET on IRIS VGX Workstation
Author: Phillip West

/* M-1 tanks passing by a palm tree */
OBJECTACTIVATE 5010003 PalmTree 345700 0 22:0.0
OBJECTDEACTIVATE 5010003 22:35.0

/* Change velocities of M-1 tanks */
VEHICLESPEED 5010001 5.0 345670 0.0 26:0.0
VEHICLESPEED 5010001 5.0 345677 0.0 27:25.0

/* Deactivate M 1 tanks */
VEHICLE DEACTIVATE 5010001 29:45.0
VEHICLEDEACTIVATE 5010002 29:50.0

/* Deactivate column of jeeps */
SCRIPTCALL script-3.jeeps

/* Continue script with another scenario */
SCRIPTCALL script-4.f14

/* Deactivate clouds */
ENVIRONMENTDEACTIVATE 5010500 45:0.0

/* Script delay for duration of 2 minutes prior to termination *I
SCRIPTDELAY 2:0.0 absolute

/* Write to output script file message for next script processing *
SCRIPTFILEWRITE SCRIPTMESSAGE End of Script

/* script message for end of script */
SCRIPTMESSAGE *** DEMO COMPLETE ***

/* Terminate script *1
SCRIPTABORT

50

.....

I**
File: script-2.jeeps
Description: Sample script of activating multiple jeeps
Host Id Number: 501
Simulator: NPSNET on IRIS VGX Workstation
Author: Phillip West

/* Activate jeep vehicle */
VEHICLEACTIVATE 5010010 Jeep 090.0 40.0 345678 0.0 10:0.0

/* Repeat script for 10 iterations with total 11 separate vehicles */
SCRIPTREPEAT 10 1 1:0.0

File: script-3.jeeps
Description: Sample script of deactivating multiple jeeps
Host Id Number: 501
Simulator: NPSNET on IRIS VGX Workstation
Author: Phillip West

/* Deactivate jeep vehicle */
VEHICLEDEACTIVATE 5010010 29:0.0

/* Repeat script for 10 iterations with total 11 deactivate jeeps *,

SCRIPTREPEAT 10 1 1.0

51

File: script-4.fl4
Description: Sample of a script of a flying aircraft
Host Id Number: 501
Simulator: NPSNET on IRIS VGX Workstation
Author: Phillip West

/* Activate F-14 aircraft in flight status */
VEHICLEACTIVATE 5010110 F14 090.0 540.0 345678 1000.0 30:0.0

/* Aircraft roll to port 10 degrees */
VEHICLEROLL 5010110 10.0 port 344677 1000.0 31:10.0

/* Aircraft level roll to 0 degrees */
VEHICLEROLL 5010110 0.0 none 344676 996.7 34:56.5

/* Sea sparrow launch from F-14 */
WEAPONLAUNCH 5010210 5010110 seasparrow 240.0 R 400.0 -10.0\

344675 995.6 36:0.0

/* Weapon impact on surface */
WEAPONIMPACT 5010210 5010110 342670 0.0 38:43.5

/* Weapon exploded on surface */
WEAPONEXPLOSION 5010210 5010110 342670 0.0 39:0.0

/* Deactivate F-14 */
VEHICLEDEACTIVATE 5010110 43:0.0

52

APPENDIX C
Class Definition of ScriptProcessor

// Classtype: ScriptProcessor
// Derived from: VehicleProcessor, WeaponProcessor,
/ / MiscObjectProcessor, EnvironmentProcessor,
// ScriptOptionProcessor
// Base for: OasisSystem
// Remarks: This class provides the mechanism to read script
// files and process script events for valid script
// objects and comments.

class ScriptProcessor : private VehicleProcessor,
private WeaponProcessor,
private MiscObjectProcessor,
private EnvironmentProcessor,
private ScriptOptionProcessor

public:
ScriptProcessoro; // Constructor
-ScriptProcessor(); // Destructor
// Member functions for ScriptProcessor
long ReadScriptObject(ScriptObject& Script);

II Reads next script object from input script file and
// returns null if error occurs.

SourceScriptFile* GetScriptFile();
// Returns reference pointer of current input script file.

void SetScriptFile(SourceScriptFile* Scriptfile);
// Assigns current script file for script processing.

void SetUtmScriptDefaults(char *Gridzone, char *Mgrs);
// Assigns default gridzones and mgrs for event positions.

ScriptProcessor* Instance(;
// Returns reference pointer of instance.

virtual char *ClassName();
// Returns class identification string.

protected:
SourceScriptFile* CurrentScriptFile;

// Current input script file.
private:

long SetupScriptLine(char *Line);
// Removes excess blank spaces and converts uppercase
II characters to lower case. Returns SCRIPT COMMENT
II if script line is the beginning of a comment block.

long ScanForBlankLines(char *Line);
II Returns null for non-blank lines.

53

long DetermineEvent(ScriptObject& Script, char* Line);
// Determines procedural operator for script object, and
// calls group processor for procedural operator. Returns
// null if script error occurs.

); II end class ScriptProcessor

54

APPENDIX D
Class Definition of ScriptGenerator

// Classtype: ScriptGenerator
// Derived from: OasisSystemObject
// Base for: OasisSystem
// Remarks: This class provides the mechanism in writing script
// files.

class ScriptGenerator : public OasisSystemObject
public:

ScriptGenerator(); // Constructor.
-ScriptGeneratcr(); // Destructor.
// Member functions for ScriptGenerator
long OpenOutputFile(char *Name);

// Opens output script file and returns TRUE for successful
// file open.

long WriteScriptObject(ScriptObject& Script);
// Writes script object to script file and returns TRUE for
// successful file write.

long WriteScriptLine(char *Line);
// Writes script object to script file and returns TRUE for
// successful file write.

long CloseOutputFile();
// Closes output script file and returns result of file
// close.

ScriptGenerator* Instance(;
// Returns reference pointer of instance.

virtual char *ClassName(;
// Returns class identification string.

protected:
DestinationScriptFile OutFile;

// Current destination script file.
private:

void WriteVehicleEvent(VehicleEvent& Vehicle);
// Writes script object of vehicle event to output script
// file.

void WriteWeaponEvent(WeaponEvent& Weapon);
// Writes script object of weapon event to output script
// file.

void WriteMiscObjectEvent(MiscObjectEventG MiscObject);
// Writes script object of miscellaneous object event to
I/ output script file.

void WriteEnvironmentEvent(EnvironmentEvent& Environment);
// Writes script object of environment event to output
// script file.

55

void WriteComment (ScriptComment& Comment);
// Writes script comment block to output script file.

;IIend class ScriptGenerator

56

APPENDIX E
Class Definition of TimeKeeper

// Classtype: TimeKeeper
// Derived from: OasisSystemObject
// Base for: OasisSystem
// Remarks: This class provides the functions to keep track of
// time, and convert to and from script object
// timestamps.

class TimeKeeper : public OasisSystemObject
public:

TimeKeepero; // Constructor
TimeKeeper(long Reference); // Constructor
-TimeKeepero; // Destructor
// Member functions for TimeKeeper
long GetClockReference();

// Returns clock reference of timekeeper.
void SetClockReference(long Reference);

// Assigns clock reference of timekeeper.
void StartSystemTime();

// Saves time of system start.
void StartInputScriptTime 0;

// Saves time of start for input script.
void StartOutputScriptTimeo;

// Saves time of start for output script.
void SetSystemStartTime(long Seconds, long Microseconds);

// Assigns system start time.
void SetInputScriptStartTime(long Seconds, long Microseconds);

II Assigns start time for input script file.
void SetOutputScriptStartTime(long Seconds, long Microseconds);

// Assigns start time for output script file.
void CurrentSystemTimestamp(ScriptEvent& Event);

// Assigns timestamp of script object to current system
II time (Absolute or Relative).

void ScriptToSystemTimestamp(ScriptEvent& Event, long Reference);
II Modifys timestamp of script object to reflect time
II reference to system time.

void SystemToScriptTimestamp(ScriptEvent& Event,long Reference);
II Assigns timestamp of script object to reflect reference
// to rtart of system time or start of input script file.

void SetScriptDelay(ScriptEvent& Delay, long Reference);
// Assigns time to disable script delay based on type of
// delay. Absolute delay is based on system start time.
If Relative is based on duration of delay.

long ActiveScriptDelay();
II Returns TRUE if script delay is still active.

57

TimeKeeper* Instance(0;
// Returns reference pointer of instance.

virtual char *ClassName(;
// Returns class identification string.

private:
long ClockReference;

I/ Time reference for time keeper.
TimeValue SystemStarttime;

// Start time of system.
TimeValue InputScriptStarttime;

// Start time of input script.
TimeValue OutputScriptStarttime;

// Start time of output script.
TimeValue End Of DelayTime;

1/ Time to release script delay.
void ConvertToTirqestamp(TimeValue *time, ScriptEvent& Event);

// Converts system time to script object timestamp.
}; II end class TimeKeeper

58

APPENDIX F
Class Definition of OasisSystem

// Classtype: OasisSystem
// Derived from: TimeKeeper, ScriptProcessor, ScriptGenerator
// Base for: OasisScriptSorter, OasisScriptPreprocessor
I/ Remarks: This class provides the mechanism for reading and
// writing script files. All script options are
// processed internally.

class OasisSystem : private TimeKeeper,
private ScriptProcessor,
private ScriptGenerator

public:
OasisSystemo; // constructor
OasisSystem(long ClockReference);// constructor (use SYSTEMCLOCK

II for reference in system time
I/ access, or use USER CLOCK for
// time provide by the user.

-OasisSystemo; // destructor
// Member functions for OasisSystem
long OpenlnputScriptFile(char *Name);

I/ Opens script file for input. Returns TRUE for successful
I/ file open.

long OpenOutputScriptFile(char *Name);
// Opens script file for output. Returns TRUE for
I/ successful file open.

long GetScriptObject(ScriptObject& Script);
// Requires ScriptObject as argument for script event I/O.
II The script object is returned with result of either -
// SCRIPTERROR, SCRIPTVALID, ENDOFSCRIPT,
// SCRIPTINDELAY, or NOSCRIPTEVENT.

long PutScriptObject(ScriptObject& Script);
// Writes script object to output script file and returns
I/ TRUE for successful file write.

long CloseInputScriptFile);
// Closes input script file and returns result of TRUE for
// successful file close.

long CloseOutputScriptFile);
// Closes input script file and returns result of TRUE for
// successful file close.

double GetTimeFactoro;
1/ Returns time factor for computing timestamps for all
// script objects.

void SetTimeFactor(double Factor);
// Assigns time factor for computing timestamps for all
// script objects.

59

void SetSystemStartTime(long Seconds, long Microseconds);
// Only used in USER CLOCK time reference, the system
// starttime is altered to match total seconds and
// microseconds. Start times for input and output script
// files will be the same for system start time.

void DisableScriptMessagesAndDelays();
I/ Sets flag for no script messages to be displayed and
// no script delays to be activated

OasisSystem* Instance 0;
// returns reference pointer of instance.

virtual char *ClassName(;
// returns class identification string.

protected:
SourceScriptFile *CurrentInputFile;

// Reference to current input scriptfile
private:

long EndOfInputScript;
// Boolean flag for end of script file.

long DelayActive;
// Boolean flag for active script delay.

long MessagesAndDelays;
// Initially TRUE allowing script messages and delays

double TimeAdjustment;
// Amount of time to adjust script timestamps.

double TimeFactor;
// Time factor for each computed timestamp.

long TimeReference;
// Time reference for determining type of timestamp for
// script object. ABSOLUTETIME for assigning timestamps
II relative to system start time. RELATIVETIME for
II assigning timestamps relative to input script start
II time.

void ModifyScriptObject(ScriptEvent& Event);
// Modifys script object in computing timestamps according
I/ to time reference time adjustment, and time factor.

long ProcessScriptOption(ScriptOption& Option);
II Process script option for OASIS. Returns either
// SCRIPT VALID or ENDOFSCRIPT.

long DelayScript(ScriptOption& Option);
II Assigns script delay based on type of reference in time
// delay. If absolute, delay is aborted when system time
// matches time of delay. If relative, time of delay is
II added to time of receiving script object for reference.

long ChainScript(ScriptOption& Option);
II Closes current script file and opens another. Returns
II null if error occurs.

long CallScript(Scriptoption& Option);
II Calls script file as a subroutine and returns back to
II calling script file. Returns null if error occurs
II during file open.

60

long RepeatScript(ScriptOption& Option);
// Repeats current script file for number of iterations.

}; II end class OasisSystem

61

APPENDIX G
Class Definition of OasisScriptSorter

// Classtype: OasisScriptSorter
// Derived from: OasisSystem
II Base for: none
II Remarks: This class provides the mechanism to sort script
// objects of source script files and writes back to a
II destination script file. The qsort function of
// ANSI C is used for sorting.

class OasisScriptSorter : private OasisSystem
public:

OasisScriptSortero(; / Constructor
-OasisScriptSortero; 1/ Destructor
// Member functions for OasisScriptSorter
long PerformSort(char *Source, char *Destination);

// Performs sort of source script file and generates sorted
I/ script to a destination script file. Source and
II Destination can be the same file name.

OasisScriptSorter* Instance(0;
/1 Returns reference pointer of instance.

virtual char *ClassName(;
// Returns class identification string.

private:
long ReadScriptFile(char *Source);

// Reads script file into sort array and returns TRUE for
// valid script file or FALSE for invalid script file.

long WriteScriptFile(char *Destination);
I/ Writes script objects from sort array to destination
// script file. Returns TRUE if valid script write.

long NumberOfEntries;
// Returns number of script objects in sort array.

ScriptSource *Script;
I/ Array for sorting script objects.

void CreateSortArray 0;
// Creates sorting array.

void DestroySortArray 0;
// Destroys sorting array.

double GetTimestamp(ScriptObject& Source);
II Returns timestamp in total seconds and microseconds from
// script object.

double PreviousTimestamp;
II Timestamp of previous script object.

long PreviousObjectWasAComent;
II Boolean flag for previous script object.

}; // end OasisScriptSorter

62

APPENDIX H
Class Definition of OasisScriptPreprocessor

//Cl.asstype: OasiskcriptPreprocessor
//Derived from: OasisSystem
IIBase for: none

a //Remarks: This class provides a mechanism to check source
// script files errors prior to use.

class Oa isScritreprcessor : private OasisSystem C*
public:

OasisScriptPreprocessoro; //Constructor
-OasisScript~reprocessoro; IIDestructor
// Member functions for OasisScriptPreprocessor
long PerforrnErrorChecking(char *Source);

IReads script file and displays to standard output device
Iof all errors in script file.

OasiaScriptPreprocessor* Instance 0;
// Returns reference pointer of instance.

virtual char *ClassNameo;
// Returns class identification string.

;IIend OasisScriptPreprocessor

63

APPENDIX I
Class Definitions of Script Events and Attributes

// Classtype: ObjectHeading
I/ Derived from: EventAttribute
// Base for: VehicleEvent, WeaponEvent, EnvironmentEvent
// Remarks: This class provides functions for object headings
// in degrees.

class ObjectHeading : public EventAttribute
public:

ObjectHeadingo; // Constructor
-ObjectHeadingo; // Destructor
// Member functions for ObjectHeading
void SetHeading(float Value);

// Assigns object heading in degrees.
float GetHeading();

// Returns object heading in degrees.
void SetHeadingType(char Type);

// Assigns heading type.
char GetHeadingType);

// Returns heading type as a string (absolute or relative),
ObjectHeading* Instance();

// Returns reference pointer of instance.
virtual char *ClassName(;

// Returns class identification string.
private:

float Heading;
// Heading of object in degrees.

char HeadingType;
// Heading in Relative direction 'r'
// or Absolute direction 'a'

}; // end class ObjectHeading;

// Classtype: ObjectVelocity
// Derived from: EventAttribute
// Base for: VehicleEvent, WeaponEvent, EnvironmentEvent
// Remarks: This class provides functions for object velocity
// in kilometers per hour.

class ObjectVelocity : public EventAttribute
public:

ObjectVelocity(); // Constructor
-ObjectVelocity(; // Destructor

64

// Member functions for ObjectVelocity
float GetVelocity);

// Returns object velocity in km/h.
void SetVelocity(float Value);

// Assigns object velocity in km/h.
ObjectVelocity* Instance 0;

// Returns reference pointer of instance.
virtual char *ClassNameo;

// Returns class identification string.
private:

float Velocity;
// Velocity of object in kilometers per hour.

}; // end class ObjectVelocity;

// Classtype: ObjectfitchAngle
// Derived from: EventAttribute
// Base for: VehicleEvent, WeaponEvent
// Remarks: This class provides the functions for object pitch
// angle in degrees.

class ObjectPitchAngle : public EventAttribute {
public:

ObjectPitchAngleo; // Constructor
-ObjectPitchAngle 0; II Destructor
// Member functions for ObjectPitchAngle
float GetPitchAngle 0;

// Returns object pitch angle in degrees.
void SetPitchAngle(float Angle);

// Assigns object pitch angle in degrees.
ObjectPitchAngle* Instance);

// Returns reference pointer of instance.
virtual char *ClassName);

// returns class identification string.
private:

float PitchAngle;
// Object's pitch angle in degrees.

}; // end class ObjectPitchAngle;

II Classtype: ObjectRoll
// Derived from: EventAttribute

BI Ease for: VehicleEvent
/1 Remarks: This class provides functions for object roll.

class ObjectRoll : public EventAttribute {
public:

ObjectRoll(); // Constructor
ObjectRoll(); // Destructot

65

// Member functions for ObjectRoll
float GetRollAngle();

// Returns roll angle in degrees.
void SetRollAngle(float Angle);

// Assigns roll angle in degrees.
char *GetRollDirection();

// Returns roll direction of either "port" or "stbd"
void SetRollDirection(char *Direction);

// Assigns roll direction.
ObjectRoll* Instance();

// Returns reference pointer of instance.
virtual char *ClassName(;

// Returns class identification string.
private:

float RollAngle;
// Roll angle of object (in degrees)

char *RollDirection;
// Direction of pitch (port or stbd)

}; // end class ObjectRoll;

// Classtype: ObjectComponent
// Derived from: EventAttribute
// Base for: VehicleEvent
// Remarks: This class provides functions for object component.
// All movements of object component are represented
// by the six degrees of freedom for translation and
// rotation.

class ObjectComponent : public EventAttribute {
public:

ObjectComponent(); // Constructor
-ObjectComponent(); // Destructor
// Member functions for ObjectComponent
char *GetComponentName();

// Returns name of object component.
void SetComponentName(char *Name);

// Assigns name to object component.
float GetComponentRotation(long Axis);

// Returns component rotation in the requested axis.
void SetComponentRotation(float Xval, float Yval, float Zval);

// Assigns component rotation in the X, Y, and Z axis.
float GetComponentTranslation(long Axis);

// Returns component translation in the requested axis.
void SetComponentTranslation(float Xval, float Yval,float Zval);

// Assigns component translation in the X, Y, and Z axis.
ObjectComponent* Instance(0;

// Returns reference pointer of instance.
virtual char *ClassName);

II Returns class identification string.

66

private:
char *ComponentName;

// Component name of object.
float ComponentRotation[XYZJ;

// Degrees of freedom in rotation.
float ComponentTranslation[XYZ];

// Degrees of freedom in translation.
}; /1 end class ObjectComponent;

/I Classtype: ObjectWeapon
II Derived from: EventAttribute
II Base for: VehicleEvent
I/ Remarks: This class provides functions for object weapons,
II Usually components on vehicles.

class ObjectWeapon : public EventAttribute {
public:

ObjectWeapono; II Constructor
-ObjectWeapono; // Destructor
// Member functions for Objectweapon
long GetWeaponRounds();

// Returns number of rounds in weapon.
void SetWeaponRouids(long Rounds);

// Assigns number of rounds to weapon.
char *GetWeaponName();

// Return name of weapon.
void SetWeaponName(char *Name);

// Assigns name of weapon.
ObjectWeapon* Instance(0;

// Returns reference pointer of instance.
virtual char *ClassName(;

// Returns class identification string.
private:

char *WeaponName;
// Weapon component name.

long WeaponRounds;
// Number of rounds in Weapon.

}; // end class ObjectWeapon

67

// Classtype: ObjectExplosion
// Derived from: EventAttribute
// Base for: VehicleEvent, WeaponEvent, MiscObjectEvent
// Remarks: This class provides functions for object explosions

class ObjectExplosion : public EventAttribute (
public:

ObjectExplosion(); // Constructor
-ObjectExplosiono; // Destructor
// Member functions for ObjectExplosion
char *GetExplosionDescription(0;

// Returns description of explosion.
void SetExplosionDescription(char *Description);

// Assign description of object explosion.
float GetExplosionBoundArea(long Axis);

II Return coordinate of explosion bound area along
// requested axis.

void SetExplosionBoundArea(float Xval, float Yval, float Zval);
// Assign X, Y, and Z coordinates of explosion bound area.

ObjectExplosion* Instance 0;
// Returns reference pointer of instance.

virtual char *ClassName);
// Returns class identification string.

private:
char *ExplosionDescription;

// Descriptive type of explosion.
float ExplosionBoundArea[XYZ];

// Maximum area bound in X, Y, Z coordinates.
}; /I end class ObjectExplosion;

/ Classtype: ObjectFireAndSmoke
II Derived from: EventAttribute
/1 Base for: VehicleEvent, WeaponEvent, MiscObjectEvent
// Remarks: This class provides functions for all object fire
II and smoke events.

class ObjectFireAndSmoke : public EventAttribute
public:

ObjectFireAndSmoke0; // Constructor
-ObjectFireAndSmoke); If Destructor
// Member functions for ObjectFireAndSmoke
char *GetFireAndSmokeDescription{);

// Returns descriptive type of smoke or fire.
void SetFireAndSmokeDescription(char *Description);

// Assigns descriptive type of smoke or fire on object.
float GetFireAndSmokeBoundArea(long Axis);

I/ Returns coordinate of requested axis of maximum bound
// area of smoke or fire.

68

void SetFireAndSmokeBoundArea(float Xval,float Yval,float Zval);
// Assigns coordinates of X, Y, and Z axis maximum bound
// area of smoke or fire.

float GetFireAndSmokeOffset(long Axis);
// Returns coordinate of requested axis of smoke or fire
1/ offset on object.

void SetFireAndSmokeOffset(float Xval, float Yval, float Zval);
// Assigns coordinates of X, Y, and Z axis smoke or fire
// offset on object.

ObjectFireAndSmoke* Instance();
// Returns reference pointer of instance.

virtual char *ClassName(;
// Returns class identification string.

private:

char *FireAndSmokeDescription;
// Descriptive type of smoke or flame on object.

float FireAndSmokeBoundArea[XYZ];
// maximum area bound in X, Y, and Z coordinates.

float FireAndSmokeOffset[XYZ];
// Offset coordinates on object.

1; // end class ObjectFireAndSmoke;

// Classtype: ObjectTrail
// Derived from: EventAttribute
// Base for: VehicleEvent
// Remarks: This class provides functions for object trails.

class ObjectTrail : public EventAttribute I
public:

ObjectTrail(); // Constructor
-ObjectTrail(); // Destructor
// Member functions for ObjectTrail
char *GetTrailDescription();

// Returns description of object trail.
void SetTrailDescription(char *Description);

// Assigns description to object trail.
float GetTrailBoundArea(long Axis);

// Returns coordinate of trail bound area along request
// axis.

void SetTrailBoundArea(float Xval, float Yval, float Zval);
// Assigns maximum bound area coordinates for X, Y, and Z.

float GetTrailOffset(long Axis);
// Returns coordinate of trail offset along request axis.

void SetTrailOffset(float Xval, float Yval, float Zval);
// Assigns object coordinates in X, Y, and Z for trail
// offset.

ObjectTrail* Instance(0;
// Returns reference pointer of instance.

69

virtual char *ClassNameo;
// Returns class identification string.

private:
char *TrailDescription;

// Descriptive type of object trail.
float TrailBoundArea[XYZ];

// Maximum area bound of trail.
float TrailOffset[XYZ];

// Offset position on object.
}; // end class ObjectTrail;

// Classtype: ObjectFuel
// Derived from: EventAttribute
/1 Base for: VehicleEvent
II Remarks: This class provides functions for object fuel.
// Fuel is represented in Liters.

class ObjectFuel : public EventAttribute
public:

ObjectFuel(); // Constructor
-ObjectFuel(); // Destructor

// Member functions for ObjectFuel
float GetFuel();

// Returns amount of fuel in liters.
void SetFuel(float Value);

// Assigns amount of fuel in liters.
ObjectFuel* Instance();

// Returns reference pointer of instance.
virtual char *ClassName(;

// Returns class identification string.
private:

float Fuel;
// Fuel state of Object (liters).

}; // end class ObjectFuel;

II Classtype: EventObject
// Derived from: OasisEventObject
II Base for: VehicleEvent, WeaponEvent, MiscObjectEvent,
// EnvironmentEvent
If Remarks: This class provides functions for all event objects

class EventObject : public OasisEventObject I
public:

EventObject(); // Constructor
-EventObject(); // Destructor

70

// Member functions for OasisEventObject
long ConvertIdFromLongInteger(long Id);

// Converts a number to host and object identification
// numbers.

long ConvertIdToLonglnteger();
// Returns number representing host and object id numbers.

long GetHostNumber);
// Returns host number of object.

void SetHostNumber(long Number);
// Assigns host number for object.

long GetObjectNumber);
// Returns object identification number of object.

void SetObjectNumber(long Number);
// Assigns object identification number to object.

char *GetObjectDescription(;
// Returns object description.

void SetObjectDescription(char *Description);
// Assigns description to object.

char *GetObjectStatus();
// Returns descriptive status of object.

void SetObjectStatus(char *Status);
// Assigns descriptive status of object.

EventObject* Instance);
// Returns reference pointer of instance.

virtual char *ClassName(;
// returns class identification string.

private:
long ObjectHostNumber;

// Host identification number of object.
long ObjectNumber;

// Object identification number.
char *ObjectDescription;

// Description type of object.
char *ObjectStatus;

// Descriptive status of object.
1; // end EventObject

// Classtype: WeaponSource
// Derived from: EventAttribute
// Base for: WeaponEvent
II Remarks: This class provides functions for weapon source.

class WeaponSource : private EventAttribute {
public:

Weapon-r"urce); // Constructor
-WeaponSource(0; I Destructor

71

// Member functions for WeaponSource
EventObject& GetWeaponSource(;

// Returns source object of weapon.
void SetWeaponSource(EventObject& Source);

// Assigns source obje-t of weapon.
WeaponSource* Instance();

// Returns reference pointer of instance.
virtual char *ClassName(;

// Returns class identification string.
private:

EventObject SourceOfWeapon;
// Source object assocated with weapon.

}; // end class WeaponSource

// Classtype: TimeStamp
// Derived from: OasisEventObject
// Base for: ScriptEvent
// Remarks: This class provides functions for all timestamps.

class TimeStamp : public OasisEventObject
public:

TimeStampo; // Constructor
-TimeStampo; // Destructor
// Member functions for TimeStamp
void SetHours(long Value);

// Assigns hours in timestamp.
long GetHours();

// Returns hours in timestamp.
void SetMinutes(long Value);

// Assigns minutes in timestamp.
long GetMinutes();

// Returns minutes in timestamp.
void SetSeconds(long Value);

// Assigns seconds in timestamp.
long GetSeconds(0;

// Returns seconds in timestamp.
void SetMicroseconds(long Value);

// Assigns microseconds in timestamp.
long GetMicroseconds 0;

// Returns microseconds in timestamp.
long StringToTimestamp(char *Timestring);

// Converts timestamp string to hours, minutes, seconds,
// and microseconds.

char *TimestampToStringo;
// Returns timestamp as a string.

TimeStamp* Instance(0;
// Returns reference pointer of instance.

virtual char *ClassName);
II Returns class identification string.

72

private:
long Hours;

// Timestamp hours.
long Minutes;

// Tirnestamp minutes.
long Seconds;

// Timestamp seconds.
long Microseconds;

ITimestamp microseconds.
char *TimeString;

t // Timestamp in string format.
;IIend class TimeStamp

//Classtype: EventPosition
/1Derived from: OasisEventObject
IIBase for: ScriptEvent
//Remarks: This class provides functions for UTM coordinates

II and eleiations.

class EventPosition :public QasisEventObject f
public:

EventPositiono; //Constructor
~-EventPositiono; IIDestructor
// Member functions for EventPosition
void SetGridzone (char *NewGridzone);

// Assigns gridzone of UTM position
char *GetGridzone 0;

// Returns gridzone of UTM coordinates.
void SetMgrs(char *NewMgrs);

// Assigns MGRS of UTH coordinates.
char *GetMgrso;

// Returns MGRS of UTH coordinates.
void SetNorthing(long Value);

// Assigns Northing of UTM coordinates.
long GetNorthingo;

// Returns Northing of UTM coordinates.
void SetEasting(long Value);

// Assigns Easting of UTM coordinates.
long Get~asting 0;

// Returns Easting of UTM coordinates.
void SetElevation(float Value);

// Assigns elevation.
float GetElevationo;

// Returns elevation.
long StringToUtmPosition(char *Position, char *defaultGZ,

char *defaultMGRS);
IExtracts UTM coordinates from Position, and returns null
/if error occurs. Default gridzone and mgrs are required
Ifor UTM defaults.

73

long StringToMap(char *map strg, char *defaultGZ,
char *defaultMGRS);

// Extracts default UTM gridzone and/or Mgrs, and returns
// null if error occurs.

char *U;ositicnJoString(;
I/ Returns UTM coordinates as a string.

EventPosition* Instance();
// Returns reference pointer of instance.

virtual char *Classiameo;
// Returns class identification string.

private:
char *Gridzone;

// grid zone of UTM coordinate system
char *Mgrs;

// mgrs of UTM coordinate system
long Northing;

// northing offset of grid zone
long Easting;

/I easting offset of grid zone
float Elevation;

// altitude
char *PositionString;

// UTM coordinates in string format
}; // end class EventPosition;

/ Classtype: ScriptEvent
// Derived from: EventObject, EventPosition, EventAttribute,
// TimeStamp
// Base for: VehicleEvent, WeaponEvent, MWscObjectEvent,
// EnvironmentEvent, ScriptConm-.nt, ScriptOption
// Remarks: This class is the base for all script events. Each
// script event must have an object, place, and time.

class ScriptEvent : public EventObject, public EventPosition,
private EventAttribute, public TimeStamp

public:
ScriptEvent 0; II Constructor
-ScriptEvent(); I/ Destructor
If Member functions for ScriotEvent
long GetEventType(0;

// Returns type of script event.
ioid SetEventType(long Type);

II Assigns type of script event.
char *GetEventResult();

// Returns descriptive result of event.
void SetEventResult(char *Result);

II Assigns descriptive result of event.

74

ScriptEvent* Instanceo;
// Returns reference pointer to instance.

virtual char *ClassName();
// Returns class identification string.

private:
long EventT-pe;

// Type of script event.
char *EventReslt;

// Description result of event.
}; // end class ScriptEvent

// Classtype: VehicleEvent
// Derived from: ScriptEvent, ObjectHe Jin , ObjectVelocity,
// ObjectPitchAngle, ObjectRoli, ObjectComponent,
// ObjectWeapon, ObjectExplosion, ObjectFireAndSmoke,
// ObjectTrail, ObjectFuel
II Base for: ScriptOL. zt
// Remarks: This class is for all vehicle events.

class VehicleEvent : public ScriptEvent, public ObjectHeading,
public ObjectVelocity, public ObjectFuel,
public ObjectPitchAngle, public ObjectRoll,
public ObjectComponent, public ObjectWeapon,
public ObjectFireAndSmoke, public ObjectTrail,
public ObjectExplosion I

public:
VehicleEvent(); // Constructor
-VehicleEvent(); // Destructor
// Member functions for VehicleEvent
VehicleEvent* Instance);

// Returns reference pointer of instance
virtual char *ClassName);

// Returns class identification string.
); I/ end class VehicleEvent

// Classtype: WeaponEvent
// Derived from; ScriptEvent, WeaponSource, ObjectHeading,
// ObjectPitchAngle,
// ObjectVelocity, ObjectExplosion
// Base for: ScriptObject
// Remarks: This class is for all Weapon events.

class WeaponEvent : public ScriptEven-, public WeaponSource,
public ObjectHeading, public ObjectPitchAngle,
public ObjectVelocity, public ObjectExplosion

75

public:
WeaponEvent(); // Constructor
-WeaponEvent(); // Destructor
// Member functions for WeaponEvent
WeaponEvent* Instance();

// Returns reference pointer of instance.
virtual char *ClassName(;

// Returns class identification string.
1; // end class WeaponEvent

/ Classtype: MiscObjectEvent
// Derived from: ScriptEvent, ObjectFireAndSnoke, ObjectExplosion
// Base for: ScriptObject
// Remarks: This class is for all miscellaneous object events.

class MiscObjectEvent : public ScriptEvent, public ObjectFireAndSmoke,
public ObjectExplosion

public:
MiscObjectEvento; // Constructor
-MiscObjectEvento; /1 Destructor
// Member functions for MiscObjectEvent
MiscObjectEvent* Instance(;

// Returns reference pointer of instance.
virtual char *ClassName);

// Returns class identification string.
I; // end class MiscObjectEvent

// Classtype: EnvironmentEvent
// Derived from: ScriptEvent, ObjectHeading, ObjectVelocity
// Base for: ScriptObject
// Remarks: This class provides is for all environment events.

class EnvironmentEvent : public ScriptEvent, public ObjectHeading,
public ObjectVelocity

public:
EnvironmentEvent(; // Constructor
-EnvironmentEvent(); // Destructor
// Member functions for EnvironmentEvent
EnvironmentEvent* Instance();

// Returns reference pointer of instance.
virtual char *ClassName(;

// Returns class identification string.
); // end class EnvironmentEvent

76

// Classtype: ScriptComment
// Derived from: ScriptEvent
// Base for: ScriptObject
// Remarks: This class provides functions for script comments.

class ScriptComment : public ScriptEvent
// Data structure for each comment line
typedef struct CommentPointer (

char *Line; // Pointer to comment line.
struct CommentPointer *Next; // Pointer to next comment line.

I CommentLink;
public:

ScriptComment(); // Constructor
-ScriptComment(); // Destructor
// Member functions for ScriptComment
long ReadFromFile(FILE *InputFile, char *Line);

// Reads from script file rest of comment block. Prior to
// function call, first script line is already read.

void DeleteComment();
// Removes all comment lines in comment block.

long GetNumberOfCommentLines();
// Returns number of lines in comment block.

CommentLink *GetCommentBlock);
// Returns reference pointer to comment block.

void SetCommentBlock(CommentLink *Block);
// Assigns reference pointer to comment block.

ScriptComment* Instance();
// Returns reference pointer of instance.

virtual char *ClassName(;
// Returns class identification string.

private:
long NurberOfCommentLines;

// Number of lines in comment block.
CommentLink *Comment;

// Reference pointer to next comment line.
I; II end class ScriptComment

// Classtype: ScriptOption
// Derived from: ScriptEvent
// Base for: Script'bject
// Remarks: This class provides functions for parameters
// associated with script options.

class ScriptOption : public ScriptEvent
public:

ScriptOption(); // Constructor
-ScriptOptiono; // Destructor

77

I/ Member functions for ScriptOption
double GetScriptTimeFactoro;

// Returns script time factor.
void SetScriptTimeFactor(double Factor);

// Assigns script time factor.

double GetScriptTimeAdjustment();
// Returns script time adjustment.

void SetScriptTimeAdjustment(double Adjustment);
// Assigns script time adjustment.

char *GetDelayType();
// Returns script delay type.

void SetDelayType(char *Type);

// Assigns script delay type.
char *GetTimeReference();

// Returns script time reference.
void SetTimeReference(char *Reference);

// Assigns time reference for assigning script timestamps.
char *GetScriptLine(;

// Returns script line or message.
void SetScriptLine(char *Line);

// Assigns script line or message.
char *GetScriptFilename(;

// Returns filename of script file.
void SetScriptFilename(char *Name);

// Assigns filename of script Zile.
long GetScriptRepeatValue();

I/ Returns script repeat value of iterations.
void SetScriptRepeatValue(long Value);

// Assigns script repeat value of iterations.
long GetScriptObjectNumberlncrement();

// Returns script object no. increment.
void SetScriptObjectNumberIncrement(long Value);

// Assigns script object number increment.
ScriptOption* Instance();

// Returns reference pointer of instance.
virtual char *ClassName);

// Returns class identification string.
private:

char *DelayType;
// Delay type in relative or absolute.

char *TimeReference;
// Time reference in relative or absolute.

char *ScriptLine;
// Reference pointer for scripe line or message.

char *ScriptFilename;
// Filename of script file.

long RepeatValue;
// Number of repeats for script file.

long ObjectNumberIncrement;
// Object number increment for each iteration.

78

double TimeFactor;
// Time factor for computing timestamps.

double TimeAdjustment;
// Time adjustment for computing timestamps,

); II end class ScriptOption

79

APPENDIX J
Class Definition of ScriptObject

l fi= === . = fii = = = = = =. . =. . fiffi === - - - - --....

/I Classtype: ScriptObject
// Derived from: VehicleEvent, WeaponEvent, MiscObjectEvent,
// EnvironmentEvent, ScriptOption, ScriptComment
// Base for: none
// Remarks: This class provides functions for accessing script

// events.

class ScriptObject : public VehicleEvent,
public WeaponEvent,
public MiscObjectEvent,
public EnvironmentEvent,

public ScriptOption,
public ScriptComment I

public:
ScriptObjecto; // Constructor
-ScriptObjecto; // Destructor
// Member functions for ScriptObject
long GetScriptEventType();

// Returns type of script event.
void SetScriptEventType(long Type);

// Assigns type of script event.
VehicleEvent& GetVehicleEvent();

// Returns reference of vehicle event.
WeaponEvent& GetWeaponEvent();

// Returns reference of weapon event.
MiscObjectEvent& GetMiscObjectEvent();

// Returns reference of misc object event.
EnvironmentEvent& GetEnvironmentEvent();

// Returns reference of environment event.
ScriptOption& GetScriptOption(;

// Returns reference of script option.
ScriptComment& GetScriptComment();

// Returns reference of script comment.
ScriptObject* Instance(0;

// Returns reference pointer of instance.
virtual char *ClassName(;

If Returns class identification string.
private:

Along ScriptEventType;
// Type of event for script object.

}; I/ end class ScriptObject

80

APPENDIX K
NPSNET-OASIS Network Interface

The following NPSNET data structure is used for sending vehicle updates over the net.
Attributes marked with an asterisk are used in the vehicle update message packet.

struct vehpostype
int vehtype;
mt control;*
int gunfire;*
int alive;*
int rounds;
int deadframes;
mnt coll-interval;
float pos[3],

eye [3],
lookatpt (3] ,
lookfrompt [3];

float direction,*
viewdirection,*
elev,*
gunelev,*
speed,*
roll,
pitch,
gas,
coll range;

1; // end structure

The following is an example of the transformation of a VEHICLEACTIVATE script
event to a data structure in the local state of the world in NPSNET-OASIS network
interface.

Vehicle (Numnber] .vehtype = LookForObjectTypeNumber(
ScriptEvent .GetObjectDescription 0);

Vehicle (Number] .control =SCRIPTED;
Vehicle(Number].gunfire = 0;
Vehicle[Nimnber].alive = TRUE;
vehicle[Numberj.rounds - DEFAULTVEHICLEROUNDS;

£Vehicle (Number] .deadframes = 0;
vehicle(Nuxnber].coll-interval = 0;
Vehicle [Number] .pos(XJ = ScriptEvent.GetEastingo;
Vehicle(Numberi.pos(Z] = MAX_-UTM_-NORTHING -

ScriptEvent.GetNorthing 0);
Vehicle(Number] .elev = ScriptEvent.GetElevationo;
Vehicle[Number].eye[X] 0.0;

81

Vehicle[Number].eye(Y] = 0.0;
VehicleENurnberJ.eye[ZJ = 0.0;
Vehicle[Number].lookatpt[X] =0.0;
Vehicle(Number].lookatpt[Y] = 0.0;
Vehicle(Number].lookatpt[Z] 0.0;
Vehicle (Number] .lookfrornpt(XJ 0.0;
Vehicle(NumberJ .lookfrornpt[Y] =0.0;
Vehicle[NunberJ .lookfrompt[Z] = 0.0;
Vehicle (Number] .direction = ScriptEvent.Getfleadingo;
Vehicle[Number] .viewdirection = 0.0;
Vehicle [Number] .elev = ScriptEvent. GetElevatP'(n 0);
Vehicle(Number].gunelev = 0.0;
Vehicle (Number] .speed = ScriptEvent.GetVelocityo;
Vehicle[NumberJ.roll = 0.0;
Vehicle[NumberJ.pitch = 0.0;
Vehicle [Number] .gas = DEFAULTVEHICLEGAS,
Vehicle(NumberJ.coll-range = 0.0;

82

LIST OF REFERENCES

1. Badler, N. I., Barsky, N. B., and Zeltzer, D., Making Them Move: Mechanics,
Control and Animation of Articulated Figures, Morgan Kaufmann Publishers, Inc., pp. 3-
93, 1991.

2. Booch, Grady, Object Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, Inc., pp. 25-131, 1991.

3. Chuang, Rand Entis G., 3-D Shaded Computer Animation - Step-by-Step, IEEE
Computer Graphics and Applications Volume 3, pp. 18-25, 1983.

4. Drummond, W. T. and Nizolak, J. P., A Graphics Workstations Field Artillery
Forward Observer Simulation Trainer, M.S. Thesis, Naval Postgraduate School,
Monterey, California, pp. 56 - 69, June 1989.

5. Entis, Glenn, "Computer Animation: 3-D Motion Specification and Controi,"
SIGGRAPH '87 Course Notes, Course #10, pp.45-50, 27-31 July 1987.

6. Reynolds, C. W. "Computer Animation with Script and Actors," SIGGRAPH '82,
Computer Graphics, Volume 16, Number 3, pp. 289-296, July 1982.

7. Silicon Graphics, Inc., IRIS Programmer's Reference Manual, Volume ll,Version
5.0, Section 3, Mountain View, California, 1990.

8. Zeltzer, David, Implementing and Interacting with Real-Time Microworlds,
SIGGRAPH '89 Course Notes, Course #29,31 July-4 August 1989.

9. Zyda, Michael J., Book Number 7, Graphics and Video Laboratory Course Notes,
Naval Postgraduate School, Monterey, California, pp. 3-13, 2 April 1991.

10. Zyda, Michael J. and Pratt, David R. NPSNET: A 3D Visual Simulator for Virtual
World Exploration and Experimentation, SID International Symposium Digest of
Technical Papers, pp.36 1-364, May 1991.

83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, California 93943-5100

3. Dr. Michael J. Zyda 8
Code CS/Zk, Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. David R. Pratt 2
Code CS/Pr, Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

5. Lt Phillip D. West, USN 1
898 Rock Street
Archbald, Pennsylvania 18403

84

